GENERICS AND REVERSE GENERICS FOR PHARO

Alexandre Bergel'* and Lorenzo Bettini*"
Lpieiad Lab, Computer Science Department (DCC), University of Chile, Santiago, Chile

2Dipartimento di Informatica, Universita di Torino, Italy
abergel@dcc.uchile.cl, bettini @di.unito.it

Keywords:

Abstract:

Generic Programming, Pharo, Dynamically Typed Languages.

Generic programming is a mechanism for re-using code by abstracting specific types used in classes and

programs. In this paper, we present a mechanism for adding generic programming in dynamically typed
languages, showing how programmers can benefit from generic programming. Furthermore, we enhance the
expressiveness of generic programming with reverse generics, a mechanism for automatically deriving new
generic code starting from existing non-generic one. We implemented generics and reverse generics in Pharo
Smalltalk, and we successfully used them to solve a problem of reusing unit test cases. This helped us to
identify a number of bugs and anomalies in the stream class hierarchy.

1 Introduction

The notion of generic programming has been orig-
inally introduced in statically typed programming lan-
guages to ease manipulation and reuse of collection
classes and algorithms. On the other hand, because of
their flexible type systems, dynamically typed object-
oriented languages have been left out of the scope of
generic programming. The need for generic program-
ming in a dynamically typed setting has been less
prominent since no restriction applies over the kind
of elements a collection may contain.

Furthermore, in a dynamically typed language like
Smalltalk, where types are absent in declarations of
linguistic entities (like methods, fields, local vari-
ables), it might look odd to talk about generic pro-
gramming. However, there is still a crucial context
where types (i.e., class names) appear statically: class
references. When creating an object, the class name is
hardcoded in the program, and this makes the object
instantiation process hard to abstract from.

There are well-known patterns to deal with this
problem, such as Factory Method (Gamma et al.,
1995), Dependency Injection (Fowler, 2004), Virtual
classes (Bracha et al., 2010) and ad-hoc linguistic
constructs (Cohen and Gil, 2007). However, these

*This author has been partially supported by Program U-
INICIA 11/06 VID 2011, grant U-INICIA 11/06, University
of Chile, and FONDECYT 1120094.

TThis author was partially supported by MIUR (Project
PRIN 2008 DISCO).

mechanisms are effective when future extensions are
foreseen. They provide little help in a scenario of
unanticipated code evolution in which the program-
ming language does provide dedicated evolutionary
construct. This paper is about fixing this issue for dy-
namically typed languages using generics.

As popularized by mainstream statically typed
programming languages, generic programming pro-
vides a mechanism for defining template classes
where some types are variables/parameters and then
for providing arguments for those type variables, thus
instantiating template classes into concrete and com-
plete classes. In the following, we then use the
term template class to refer to a class where some
types are parametrized; accordingly, we refer to a
concrete/complete class when all the arguments for
parametrized types are provided.

Reverse generics (Bergel and Bettini, 2011) is the
dual mechanism that enables the definition of a tem-
plate class from a complete class. We call this mecha-
nism generalization. It allows obtaining a brand new
generic class from an existing class by “removing”
hardwired class references, and by replacing them
with parametrized types. For instance,

G<T>=C>C<
generates the new generic class G<T> starting from
the class C by replacing each reference of a class C’
contained in C with the type parameter T in G. It is the
dual operation of the instantiation operation offered
by generics. The generic G may be instantiated into
G<U> for a provided class U. Note that, the reverse

generics mechanism satisfies the property
C=(C>TK) <T>.

Finally, an important point is that the original class
C remains unmodified. Indeed, reverse generics are
useful under the basic assumptions that (i) the code to
be reused has to be left intact (it cannot be the subject
of refactoring) and (ii) the host programming does not
implicitly support for looking up classes dynamically
(as this is the case in most dynamically languages, ex-
cept NewSpeak the supports virtual classes (Bracha
et al.,, 2010)). In particular, we aim at providing,
through our implementation of reverse generics, a
generative approach, where new generic code is (au-
tomatically) generated starting from existing one, and
the latter will not be modified at all; for this reason,
reverse generics are not, and they do not aim at, a
refactoring technique (we also refer to Section 7).

This paper extends the Pharo Smalltalk program-
ming language with generics and reverse generics.
We adapted the reverse generics to cope with the
lack of static type information (in (Bergel and Bettini,
2011) reverse generics were studied in the context of
statically typed languages such as Java and C++). Re-
quirements on type parameters can be defined as a
safety net for a sound instantiation; we provide mech-
anisms for structural and nominal requirements both
for generics and reverse generics in Pharo.

The generic mechanisms we implemented do not
depend on any Pharo facilities suggesting that gener-
ics and reverse generics are likely to be transpos-
able to other dynamically typed languages. Although
it has been realized in a dialect of Smalltalk, noth-
ing prevents them from being applied to Ruby and
Python. Even though similar mechanisms have been
proposed in Groovy (Axelsen and Krogdahl, 2009),
to the best of our knowledge, this is the first attempt
to add a generic-like construct to Smalltalk. (The
Groovy case is discussed in the related work section).

We employed reverse generics to face a classical
code reuse problem. Unit tests in Pharo are inher-
ited from Squeak, a Smalltalk dialect that served as
a base for Pharo. Those tests have been written in a
rather disorganized and ad-hoc fashion. This situation
serves as the running example of this paper and was
encountered when evolving the Pharo runtime. This
helped us identify a number of bugs and anomalies in
the stream class hierarchy.

The contributions and innovations of this paper
are summarized as follows: (i) definition of a mecha-
nism for generics in Pharo (Section 2); (ii) description
of the reverse generics model in Pharo (Section 4);
(iii) description of the implementation of both mech-
anisms (Section 5); (iv) applicability to a non triv-
ial case study (Section 6). Section 7 summarizes the

related work and Section 8 concludes the paper and
gives some perspectives on future work.

2 Generics in Pharo

This section presents a mechanism for generic
programming for the Pharo/Smalltalk programming
language®. The presentation of the mechanism is
driven by a test-reuse scenario. We will first define a
test called GCollectionTest. This test will be free from a
particular class of the collection framework. GCollec-
tionTest will be instantiated twice, for two different fix-
tures based on OrderedCollection and SortedCollection®.

Consider the following code snippet containing a
test that verifies elements addition.

"Creation of the class T”
GenericParameter subclass: #T

“Creation of the class GCollectionTest with a variable”
TestCase subclass: #GCollectionTest
instanceVariableNames: ’collection’

"Definition of the setUp method”
"It instantiates T and add 3 numbers in it”
GCollectionTest>> setUp

collection := T new.

collection add: 4; add: 5; add: 10.

"Definition of the test method testAddition”
"It adds an element in the collection defined in setUp”
GCollectionTest>> testAddition

| initialSize |

initialSize := collection size.

collection add: 20.

self assert: (collection includes: 20).

self assert: (collection size = (initialSize + 1)).

GCollectionTest is a pretty standard unit test in the
spirit of the xUnit framework (most of the 115 classes
that test the Pharo collection library follow a very
similar structure). No reference to a collection class
is made by GCollectionTest. The method setUp refers
to the empty class T. GCollectionTest may be instanti-
ated into OrderedCollectionTest and SortedCollectionTest
as follows:

“Instantiate GCollectionTest and replace

occurrences of T by OrderedCollection”

(GCollectionTest @ T-> OrderedCollection)
as: #OrderedCollectionTest

"Replace T by SortedCollection”
(GCollectionTest @ T -> SortedCollection)
as: #SortedCollectionTest

3http://www.pharo—project.org
4A fixture refers to the fixed state used as a baseline for
tests. We consider the setUp method only in our situation.

http://www.pharo-project.org

The generic class GCollectionTest has been instan-
tiated twice, each time assigning a different class to
the parameter T. We adopted the convention of defin-
ing generic parameter as subclasses of GenericParam-
eter. This convention has a number of advantages, as
discussed in Section 5. Since GCollectionTest contains
references to T, it is a generic class. There is therefore
no syntactic distinction between a class and a generic
class. GCollectionTest is a generic class only because T
is a generic parameter and T is referenced in setUp.

Pharo has been extended to support the (... @ ... ->
...) as: ... construct. These three operators defines the
life cycle of a generic in Pharo.

Compared to the Java generics mechanism, gener-
ics for Pharo operates on class references instead of
types. A class provided as parameter may be freely in-
stantiated, as in the example above. Generics in Pharo
are similar to a macro mechanism. In that sense, it
shares similarities with C++ templates but using a dy-
namically type stance.

3 Requirements for generic
parameters

In order for a generic class to be instantiated, a
class needs to be provided for each generic parameter.
To prevent generic instantiation to be ill-founded, re-
quirements for a generic parameter may be declared.
These requirements are enforced when a generic
class is instantiated. Requirements are formulated
along nominal and structural definitions of the base
code.

Nominal requirements. Static relationship between
types may be verified when instantiating a generic
class. In the example above, T must be a subtype of
Collection’. This is specified by defining a method re-
quirements that returns myself inheritsFrom: Collection:

T>> requirements
"(myself inheritsFrom: Collection)

In that case, instantiation of GCollectionTest raises
an error if a class that is not a subclass of Collection is
provided as parameter.

Note that we introduced the myself pseudo vari-
able. This variable will be bound to the class provided
as the generic parameter when being instantiated.
The variable self, which references the receiver
object, cannot be used within requirements.

SWe use the following convention: a class is a type when
considered at compile time, and it is an object factory at
runtime.

Structural requirements. In addition to nominal re-
quirements, a generic parameter may be also struc-
turally constrained. A constraint is satisfied based on
the presence of some particular methods. In the ex-
ample above, a method check may return

myself includesSelectors: {#add: . #includes: . #size}

In that case, only a class that implements the method
add:, includes:, and size can be provided in place of T.

We express a requirement as a boolean expression.
The keyword inheritsFrom: and includesSelectors: are
predicates. They may therefore be combined using
boolean logic operators. For instance, we can express
all the above requirements as follows:

T>> requirements
“(myself inheritsFrom: Collection)
and: [myself includesSelectors:
{#add: . #includes: . #size}]

Dynamically typed languages favor sophisticated
debugging and testing sessions over static source code
verification. The lack of static type annotation makes
any isolated check on a generic not feasible. Com-
pleteness of T’s requirements cannot be verified by
the compiler, thus, it is up to the programmers to pro-
vide a set of satisfactory requirements when defining
generic parameters. In practice, this has not been a
source of difficulties.

4 Reverse Generics in Pharo

This section presents the reverse generics mech-
anism in Pharo; we will use a scenario that consists
of reusing unit tests. Consider the following class
WriteStreamTest taken from an earlier version of Pharo:

ClassTestCase subclass: #WriteStreamTest

WriteStreamTest >> testlsEmpty
| stream |
stream := WriteStream on: String new.
self assert: stream isEmpty.
stream nextPut: $a.
self deny: stream isEmpty.
stream reset.
self deny: stream isEmpty.

The class WriteStreamTest is defined as a subclass
of ClassTestCase, itself a subclass of SUnit’s TestCase.
WriteStreamTest defines the method testlsEmpty, which
checks that a new instance of WriteStream is empty
(i.e., answers true when isEmpty is sent). When the
character $a is added into the stream, it is not empty
anymore. And resetting a stream moves the stream

pointer at the beginning of the stream, without remov-
ing its contents. WriteStreamTest has 5 other similar
methods that verify the protocol of WriteStream.

We consider that most of the important features of
WriteStream are well tested. However, WriteStream has
27 subclasses, which did not receive the same atten-
tion in terms of testing. Only 3 of these 27 classes
have dedicated tests (FileStream, ReadWriteStream and
MultiByteFileStream). Manually scrutinizing these 3
classes reveals that the features tested are different
than the one tested in WriteStreamTest®.

The remaining 24 subclasses of WriteStream are ei-
ther not tested, or indirectly tested. An example of an
indirect testing: CompressedSourceStream is a subclass
of WriteStream for which the feature of WriteStream
are not tested. CompressedSourceStream is essentially
used by the file system with FileDirectory, which is
tested in FileDirectoryTest.

The situation may be summarized as follows:
WriteStream is properly tested and has 22 subclasses,
but none of these subclasses have the features defined
in WriteStream tested for their particular class.

This situation has been addressed by refactoring
the collection framework using TraitTest (Ducasse
et al., 2009). We make a different assumption here:
the base system must be preserved, which implies that
a refactoring is not desirable. Refactoring may have
some implications on the overall behavior, especially
in terms of robustness and efficiency. It has been
shown that inheritance is not that helpful in this sit-
uation (Flatt and Felleisen, 1998; Bergel et al., 2005).

With our implementation of reverse generics in
Pharo, a generic class GStreamTest can be obtained
from the class WriteStreamTest by turning all refer-
ences of WriteStream into a parameter that we name
T.

Generic
named: #GStreamTest
for: WriteStream -> T @ WriteStreamTest

Following a Java-like syntax (Bergel and Bettini,
2011), the above code corresponds to the following
reverse generic definition:

class GStreamTest<T> = WriteStreamTest>WriteStream<

The generic GStreamTest is defined as a copy of
WriteStreamTest for which all references to WriteStream
have been replaced by the type T introduced in the
previous section (Section 2). GStreamTest may now be
instantiated by replacing all references of WriteStream
with untested subclasses of WriteStream as illustrated
in Section 2:

According to our experience, this is a general pat-
tern. Often programmers focus essentially on testing added
methods and variable when subclassing.

“Instantiate GStreamTest and replace occurrences of T
by ZipWriteStream”
(GStreamTest @ T-> ZipWriteStream)

as: #ZipWriteStreamTest

"Replace T by HtmIFileStream”
(GStreamTest @ T -> HtmlFileStream)
as: #HtmlFileStreamTest

Figure 1 summarizes the generalization and in-
stantiation of the WriteStreamTest example. Reverse
generic targets class instantiation and sending mes-
sages to a class.

The above scenario could be solved by having a
super abstract class in which the class to be tested
is returned by a method. This method could then be
overridden in subclasses (factory method design pat-
tern (Gamma et al., 1995)). However, this solution
is not always the best approach: First, tests of the
collection libraries cannot be optimally organized us-
ing single inheritance (Ducasse et al., 2009). Second,
the code to be reused may not always be editable and
modifiable. This is often a desired property to mini-
mize ripple effects across packages versions.

4.1 Requirements when generalizing

We have previously seen that requirements may be
defined on generic parameters (Section 3). These re-
quirements equally apply when generalizing a class.
Turning references of WriteStream into a parameter T
may be constrained with the following requirements:

T>> requirements
“(myself inheritsFrom: Stream)

and: [myself includesSelectors: {#isEmpty . #reset}]

Further requirements could be that the parame-
ter T understands the class-side message on:, and the
instance-side message nextPut:. However, this will
be redundant with the requirement myself inheritsFrom:
Stream, since Stream defines the method nextPut: and
on:.

Requirements may also be set for class methods,
e.g.,myself class includesSelector: {#new: } makes the
presence of the class method new: mandatory.

4.2 Capturing inherited methods

Instantiating a generic G, which is obtained from gen-
eralizing a class C, makes copies of C with connec-
tions to different classes. This process may also copy
superclasses of C when methods defined in super-
classes need to have new references of classes. This
situation is illustrated in Figure 2.

A different example is adopted in this figure. The
class AbstractFactory has an abstract method create.

WriteStreamTest

| stream |

testlsEmpty
testNextPut

stream := WriteStream
on: String new.
self assert: stream isEmpty.

¥

Generalization:
GStreamTest =

WriteStreamTest>WriteStream<

GStreamTest

| stream |

testIsEmpty
testNextPut

stream =T
on: String new.
self assert: stream isEmpty.

Generic ‘ '

instantiation:
ZipWriteStreamTest =
GStreamTest<ZipWriteStream>

ZipWriteStreamTest
rtestisEmpty
testNextPut

| stream |
stream := ZipWriteStream

on: String new.
self assert: stream isEmpty.

Generic
instantiation:
HtmiFileStreamTest =

GStreamTest<HtmlIFileStream>

HtmlFileStreamTest

rtestisEmpty

testNextPut

| stream |
stream := HtmlFileStream

self assert: stream isEmpty.

on: String new.

Figure 1: Reusing WriteStreamTest

PointFactory is a subclass of it that creates instances

of Point (not represented on the figure). This class is

subclassed into EnhPointFactory that overrides create to

count the number of instances that have been created.
Consider the generic

GEnhFactory<T> = EnhPointFactory>Point<.

This generic may be instantiated with a class Car to
produce cars instead of points:

CarFactory = GEnhFactory<Car>.

The class Point is referenced by the superclass of
EnhPointFactory. Generalizing and instantiating Enh-
PointFactory has to turn the Point reference contained in
PointFactory into Car. This is realized in reverse gener-
ics by automatically copying also the superclass into
a new generic class with a generated name.

The class inheritance is copied until the point
in the hierarchy where no superclass references a
generic parameter.

S Implementation

The homogeneity of Pharo and in general of most
of Smalltalk dialects greatly eases the manipulation
of a program structural elements such as classes and
methods. In Smalltalk, classes and methods are first-
class entities. They can be manipulated as any ob-

ject. A compiled method is a set of bytecode instruc-
tions with an array of literals. This array contains
all references to classes being used by this compiled
method (Goldberg and Robson, 1983).

Instantiating a generic is made by copying a class,
assigning a different name, and adjusting the array of
literals with a different set of class bindings. An ex-
ample of this procedure is depicted in Figure 3.

A number of design decisions were made:

e The Pharo syntax has not been modified. This has
the great advantage of not impacting the current
development and source code management tools.
This is possible since classes are first-class objects
in Pharo.

e The Smalltalk meta-object protocol has not been
extended. Again, this decision was made to limit
the impact on the development tools. As a conse-
quence, there is no distinction between a generic
and a class, thus the generic mechanism can be
implemented as a simple library to load.

Indeed these design choices are based also on
past experience in Smalltalk extensions: the last
significant change of the language was realized in
2004 (Lienhard, 2004), when traits have been intro-
duced in Squeak, the predecessor of Pharo. In the
current version of Pharo, the support of traits is frag-
ile at best (bugs are remaining and many tools are not
traits aware). This experience gained with traits sug-

PointFactory

create
A Point new

EnhPointFactory

counter

create
super create.
counter := counter + 1

I counter

| Object

[AbstractFactory

[create

\/l\

GeneratedName 1 *GeneratedName 2*
create » create

AT new A Car new

GEnhFactory CarFactory
counter

create » create

super create. super create.

counter := counter + 1 counter := counter + 1

GEnhFactory =

EnhPointFactory>Point<

CarFactory =
GEnhFactory<Car>

Figure 2: Copying superclasses, illustrated with a generic class factory

"

TestCase

WriteStreamTest

ZipWriteStreamTest

HtmlIFileStreamTest

testNextPut
testlsEmpty
]

testNextPut
testIsEmpty
e |

testNextPut
testlsEmpty
|

46 <42> pushlLit: String
47 <CC> send: new

48 <E0> send: on:

49 <68> poplntoTemp: 0
50 <70> self

45 <41> pushLit: WriteStream

45 <41> pushLit: ZipWriteStream
46 <42> pushlLit: String

47 <CC> send: new

48 <E0> send: on:

49 <68> poplntoTemp: 0

50 <70> self

45 <41> pushLit: HtmIFileStream
46 <42> pushlLit: String

47 <CC> send: new

48 <E0> send: on:

49 <68> poplntoTemp: 0

50 <70> self

Figure 3: Final results when ZipWriteStreamTest and HtmlFileStreamTest have been produced

gests that realizing a major change in the program-
ming language is challenging and extremely resource
consuming.

Note that, by using our reverse generics, one
can modify only the original existing code (i.e., the
classes that are not generic), and then, automatically,
spread the modifications to the one obtained by re-
verse generics.

The implementation presented in this paper
is freely available (under the MIT license) at
www.squeaksource.com/ReverseGeneric.html.

6 Case study: Application to the
Pharo Stream hierarchy

The situation described in Section 4 is an excerpt
of the case study we realized. For each of the 24 sub-
classes of WriteStream, we instantiated GStreamTest.

This way, about 24 new unit tests were generated.
The WriteStreamTest class defines 6 test methods. We
therefore generated 24 * 6 = 144 test methods. Each
of the generated test is a subclass of ClassTestCase,
which itself defines 3 test methods. Running these 24
unit tests executes 144 + 27 * 3 = 225 test methods.

Running these 225 test methods results in: 225
runs, 192 passed, 21 failures, 12 errors. Since the
6 tests in WriteStreamTest pass, this result essentially
says that there are some functionalities that are veri-
fied for WriteStream, but they are not verified for some
of its subclasses. An example of the culprit test meth-
ods for the failures are CrLfFileStreamTest>> testNew
and LimitedWriteStreamTest>> testSetToEnd. The fact
that these two tests fail uncovers some bugs in the
classes CrLfFileStream and LimitedWriteStream.

The body of CrLfFileStreamTest>> testNew is

self should: [CrLfFileStream new] raise: Error

meaning that a CrLfFileStream should not be instanti-
ated with new. However, the class can actually be

http://www.squeaksource.com/ReverseGeneric.html

instantiated with new, resulting in a meaningless and
unusable object.

Another example of a bug was found in Limited-
WriteStream. This class is used to limit the amount
of data to be written in a stream. The body of
LimitedWriteStreamTest>> testSetToEnd is:

LimitedWriteStreamTest>> testSetToEnd
| string stream |
string :=hello’.
stream := LimitedWriteStream with: .
stream nextPutAll: string.
self assert: stream position = string size.
stream setToEnd.
self assert: stream position = string size.
self assert: stream contents = string

It essentially verifies the behavior of the stream
index cursor. This test signals an error in the ex-
pression stream nextPutAll: string. By inspecting what
triggered the error, we discovered that when a Limit-
edWriteStream is instantiated with with: ”, the object is
initialized with a nil value as the limit, resulting in a
meaningless comparison (newEnd > limit in the method
LimitedWriteStream> > nextPutAll:).

Not all the test methods that fail and raise an er-
ror are due to some bugs in the stream class hierar-
chy. We roughly estimate that only 11 test methods
of these 33 methods have uncovered tangible bugs.
The remaining failures and errors are due to some dif-
ferences on how class should be initialized. For ex-
ample, the test StandardFileStreamTest>> testSetToEnd
raises an error because a StandardFileStream cannot be
instantiated with the message with: (it is instantiated
with fileNamed:, which requires a file name as argu-
ment). Although no bug have been located, this er-
roneous test method suggests that the method write:
should be canceled (i.e., raise an explicit error saying
it should be not invoked).

This experiment has a number of contributions:

e it demonstrates the applicability of our generics
and reverse generics to a non-trivial scenario,

e it helped us identify a number of bugs and anoma-
lies in the Pharo stream hierarchy.

7 Related work

When Java generics were designed, one of the
main intent was to have the backward compatibility
with the existing Java collection classes. The en-
abling mechanism is that all the generic type parame-
ters must be “erased” after the compilation (type era-
sure model (Odersky and Wadler, 1997; Bracha et al.,
1998)). Therefore, all the run-time type information
about parametrized types are completely lost after the

compilation, thus making impossible to execute all
the operations which require run-time types, such as,
e.g., object instantiations. This limits the expressive-
ness of Java generics (Allen and Cartwright, 2002):
for instance, if T is a generic type, the code T x = new
T() is not valid.

For these reasons, the generic type system of Java
cannot be considered “first-class”, since generic types
cannot appear in any context where standard types can
appear (Allen et al., 2003).

On the contrary, the generic programming mech-
anisms provided by C++ do not suffer from all these
issues. In particular, the C++ compiler generates a
different separate copy for each generic class instanti-
ated with specific types (and the typechecking is per-
formed on the instantiated code, not on the generic
one). Therefore, while in Java a Collection<String>
and a Collection<Integer> would basically refer to the
same class (i.e., the type erased class Collection), in
C++ they would refer to two separate classes, where
all the type information remains available. There-
fore, in C++, all the operations which require run-
time types are still available in generic classes, and
hence the C++ type generic system can be considered
“first-class” (notably, C++ templates were formalized
and proved type safe (Siek and Taha, 2006)). For in-
stance, if T is a generic type, the code T *x = new T() in
C++ is perfectly legal, since C++ templates are sim-
ilar to a macro expansion mechanism’. We refer to
Ghosh (Ghosh, 2004) and Batov’s work (Batov, 2004)
for a broader comparison between Java generics and
C++ templates.

In order for generic types to be used and type
checked in a generic class, those types must be con-
strained with some type requirements. Constraints on
generic types are often referred to as concepts (Ka-
pur et al., 1981; Austern, 1998). Java generics re-
quire explicit constraints, thus a concept is defined
using a Java interface or a base class, and a type sat-
isfies a concept if it implements that specific interface
or it extends that specific base class. On the con-
trary, the C++ compiler itself infers type constraints
on templates and automatically checks whether they
are satisfied when such generic type is instantiated.
In our implementation, generic parameters can be as-
signed constraints using nominal (similarly to Java)
and structural requirements (similarly to concepts), as
illustrated in Section 3.

In dynamically typed languages, like Smalltalk,

7 Actually, C++ templates are much more than that: (par-
tial) specialization of templates is one of the main features
that enables computation at compile time, often referred
to as template metaprogramming (Abrahams and Gurtovoy,
2004).

where types are not used in declarations, the con-
text where generics are useful is in object instantia-
tion; thus, with this respect, the generics presented in
this paper are related to C++ templates, rather than
to Java generics. The generics needed in the con-
text of Smalltalk act at a meta-level, by generating
new classes starting from existing ones, thus, they
have similarities with generative programming mech-
anisms (Eisenecker and Czarnecki, 2000) and C++
meta programming (Abrahams and Gurtovoy, 2004).
This meta programming mechanism is evident also in
our generics and reverse generics implementation in
Pharo: new code is generated starting from existing
one, without modifying the latter. This takes place in
two steps: with reverse generics a brand new generic
version is obtained starting from existing code; then,
by instantiating generic classes, the generic code is
adapted and reused in a new context.

There seem to be similarities among reverse
generics and some refactoring approaches: however,
the intent of reverse generics is not to perform re-
verse engineering or refactoring of existing code,
(see, e.g., (Duggan, 1999; von Dincklage and Diwan,
2004; Kiezun et al., 2007)) but to extrapolate possi-
ble generic “template” code from existing one, and
reuse it for generating new code. Note that this pro-
gramming methodology will permit modifying only
the original existing code, and then, automatically,
spread the modifications to the one obtained by re-
verse generics.

A first attempt to automatically extract generic
class definitions from an existing library has been
conveyed by Duggan (Duggan, 1999), well before the
introduction of generics into Java. Besides the reverse
engineering aspect, Duggan’s work diverges from re-
verse generics regarding downcast insertion and pa-
rameter instantiation. Duggan makes use of dynamic
subtype constraint that inserts runtime downcasts. A
parametrized type may be instantiated, which requires
some type-checking rules for the creation of an ob-
ject: the actual type arguments must satisfy the up-
per bounds of the formal type parameters in the class
type.

Kiezun et al. propose a type-constraints-based al-
gorithm for converting non-generic libraries to add
type parameters (Kiezun et al., 2007). It handles the
full Java language and preserves backward compati-
bility. It is capable of inferring wildcard types and
introducing type parameters for mutually-dependent
classes. Reverse engineering approaches ensure that
a library conversion preserves the original behavior of
the legacy code. This is a natural intent since such a
conversion is exploited as a refactoring. Instead, the
purpose of reverse generics is to replace static types

references contained in existing classes with special-
ized ones and then to produce a brand new class.

A limitation of first-order parametric polymor-
phism is that it is not possible to abstract over a type
constructor. For instance, in List<T>, List is a type
constructor, since, given an argument for T, e.g., In-
teger, it builds a new type, i.e., List<Integer>. How-
ever, the type constructor List itself is not abstracted.
Therefore, one cannot pass a type constructor as a
type argument to another type constructor. Template
template parameters® (?) in C++ provides a means to
abstract over type constructors. Moors, Piessens and
Odersky (Moors et al., 2008) extended the Scala lan-
guage (Odersky et al., 2008) with type construction
polymorphism to allow type constructors as type pa-
rameters. Therefore, it is possible not only to abstract
over a type, but also over a type constructor; for in-
stance, a class can be parametrized over Container[T]’,
where Container is a type constructor which is itself
abstracted and can be instantiated with the actual col-
lection, e.g., List or Stack, which are type construc-
tors themselves. The generics mechanism presented
in this paper acts at the same level of first-order para-
metric polymorphism, thus, it shares the same limita-
tions. An interesting extension would be to be able
to switch to the higher level of type constructor poly-
morphism, but this is an issue that still needs to be
investigated.

The Dependency Injection pattern (Fowler, 2004)
is used to “inject” actual implementation classes into
a class hierarchy in a consistent way. This is useful
when classes delegate specific functionalities to other
classes: messages are simply forwarded to the object
referenced in a field. These fields will have as type
an interface (or a base class); then, these fields will be
instantiated with derived classes implementing those
interfaces. This way the actual behavior is abstracted,
but we need to tackle the problem of “injecting” the
actual implementation classes: we do not have the im-
plementation classes’ names hardcoded in the code of
the classes that will use them, but we need to initialize
those classes somewhere. Moreover, we need to make
sure that, if we switch the implementation classes, we
will do that consistently throughout the code. Typi-
cally this can be done with factory method and ab-
stract factory patterns (Gamma et al., 1995), but with
dependency injection frameworks it is easier to keep
the desired consistency, and the programmer needs to
write less code. The reverse generics mechanism is
not related to object composition and delegation, i.e.,
the typical context of the inversion of control philoso-
phy that dependency injection tries to deal with. With

8The repetition of “template” is not a mistake.
9Scala uses [] instead of <>.

reverse generics the programmer does not have to de-
sign classes according the pattern of abstracting the
actual behavior and then delegate it to factory meth-
ods; on the contrary the reverse generics mechanism
allows generating new code (i.e., new classes) from
existing one, without modifying the original code.

Package Template (Sgrensen et al., 2010) is a
mechanism for reusing and adapting packages by re-
binding class references. A version has been proposed
for Groovy (Axelsen and Krogdahl, 2009). Pack-
age Template offer sophisticated composition mecha-
nisms, including class renaming and merging. The re-
verse generics mechanism is able to turn a non generic
class into a generic one, while Package Template is
not designed for this purpose.

Traits (Ducasse et al.,, 2006) were intro-
duced in the dynamically-typed class-based language
Squeak/Smalltalk to counter the problems of class-
based inheritance with respect to code reuse. Al-
though both traits and generic programming aim at
code reuse, their main contexts are different: traits
provide reuse by sharing methods across classes (in
a much more reusable way than standard class-based
inheritance), while generic programming (and also
our generics) provides a mechanism to abstract from
the type implementing specific behavior. Combining
our generic mechanism with traits looks promising in
that respect, also for the meta-programming features
of traits themselves (Reppy and Turon, 2007).

8 Conclusion

The mechanisms presented in this paper provide
features both to write generic code in a dynamically
typed language and to extrapolate possible generic
“template” code from existing one, and reuse it for
generating new code. In our approach, class gener-
alization and generic instantiation is based on class
copying, similarly to C++ templates. Although this
implies some code duplication in the generated code,
this is consistent with the meta-level which is typical
of generative programming mechanisms (Eisenecker
and Czarnecki, 2000).

Since highly parametrized software is harder to
understand (Gamma et al., 1995), we may think of
a programming methodology where a specific class is
developed and tested in a non-generic way, and then
it is available to the users via its “reversed” generic
version (in this case, we really need the non generic
version for testing purposes, so the code must not be
refactored). Therefore, reverse generics can be used
as a development methodology, not only as a way to
turn previous classes into generic: one can develop,

debug and test a class with all the types instantiated,
and then expose to the “external world” the generic
version created through reverse generics.

A limitation of the implementation presented in
this paper is that the generic parameters (like T in Sec-
tion 2 and Section 4) are global subclasses, thus there
can be only one such generic parameter (together with
its requirements, Section 3 and Section 4.1). How-
ever, in this first prototype implementation of gener-
ics and reverse generics in Pharo, this did not prevent
us from using these mechanisms to class hierarchies
(like the case study of Section 6) and to study their ap-
plicability. Of course, in future versions, we will deal
with this issue, and remove the “globality” of generic
parameters.

At the best of our knowledge, no generic (and
reverse generic) programming language construct is
available in Smalltalk, Ruby and Python that achieve
the same capabilities as we presented in this paper. It
is subject of future work to further investigate whether
our proposal can be applied to other dynamically
typed languages.

REFERENCES

Abrahams, D. and Gurtovoy, A. (2004). C++ Template
Metaprogramming: Concepts, Tools and Techniques
from Boost and Beyond. Addison-Wesley.

Allen, E., Bannet, J., and Cartwright, R. (2003). A First-
Class Approach to Genericity. In OOPSLA, pages 96—
114. ACM.

Allen, E. and Cartwright, R. (2002). The Case for Run-time
Types in Generic Java. In PPPJ, pages 19-24. ACM.

Austern, M. H. (1998). Generic Programming and the STL:
using and extending the C++ Standard Template Li-
brary. Addison-Wesley.

Axelsen, E. W. and Krogdahl, S. (2009). Groovy package
templates: supporting reuse and runtime adaption of
class hierarchies. In DLS, pages 15-26. ACM.

Batov, V. (2004). Java generics and C++ templates. C/C++
Users Journal, 22(7):16-21.

Bergel, A. and Bettini, L. (2011). Reverse Generics:
Parametrization after the Fact. In Software and Data
Technologies, volume 50 of CCIS, pages 107-123.
Springer.

Bergel, A., Ducasse, S., and Nierstrasz, O. (2005). Class-
box/J: Controlling the Scope of Change in Java. In
OOPSLA, pages 177-189. ACM.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P.
(1998). Making the future safe for the past: adding
genericity to the Java programming language. In
OOPSLA, pages 183-200. ACM.

Bracha, G., von der Ahé, P., Bykov, V., Kashai, Y., Maddox,
W., and Miranda, E. (2010). Modules as Objects in
Newspeak. In ECOOP, pages 405-428. Springer.

Cohen, T. and Gil, J. (2007). Better Construction with Fac-
tories. JOT, 6(6):103-123.

Ducasse, S., Nierstrasz, O., Schirli, N., Wuyts, R., and
Black, A. P. (2006). Traits: A Mechanism for fine-
grained Reuse. ACM TOPLAS, 28(2):331-388.

Ducasse, S., Pollet, D., Bergel, A., and Cassou, D. (2009).
Reusing and Composing Tests with Traits. In TOOLS,
volume 33 of LNBIP, pages 252-271. Springer.

Duggan, D. (1999). Modular type-based reverse engineer-
ing of parameterized types in Java code. In OOPSLA,
pages 97-113. ACM.

Eisenecker, U. W. and Czarnecki, K. (2000). Genera-
tive Programming: Methods, Tools, and Applications.
Addison-Wesley.

Flatt, M. and Felleisen, M. (1998). Units: Cool Modules
for HOT Languages. In PLDI, pages 236-248. ACM.

Fowler, M. (2004). Inversion of Control Containers and
the Dependency Injection pattern. http://www.
martinfowler.com/articles/injection.html.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Ghosh, D. (2004). Generics in Java and C++: a comparative
model. ACM SIGPLAN Notices, 39(5):40-47.

Goldberg, A. and Robson, D. (1983). Smalltalk 80: the
Language and its Implementation. Addison-Wesley.

Kapur, D., Musser, D. R., and Stepanov, A. A. (1981). Tec-
ton: A Language for Manipulating Generic Objects.
In Program Specification, volume 134 of LNCS, pages
402-414. Springer.

Kiezun, A., Ernst, M. D., Tip, F., and Fuhrer, R. M. (2007).
Refactoring for Parameterizing Java Classes. In /CSE,
pages 437-446. IEEE.

Lienhard, A. (2004). Bootstrapping Traits. Master’s thesis,
University of Bern.

Moors, A., Piessens, F., and Odersky, M. (2008). Generics
of a higher kind. In OOPSLA, pages 423-438. ACM.

Odersky, M., Spoon, L., and Venners, B. (2008). Program-
ming in Scala. Artima.

Odersky, M. and Wadler, P. (1997). Pizza into Java: Trans-
lating theory into practice. In POPL, pages 146—159.
ACM.

Reppy, J. and Turon, A. (2007). Metaprogramming with
Traits. In ECOOP, volume 4609 of LNCS, pages 373—
398. Springer.

Siek, J. and Taha, W. (2006). A semantic analysis of C++
templates. In ECOOP, volume 4067 of LNCS, pages
304-327. Springer.

Sgrensen, F., Axelsen, E. W., and Krogdahl, S. (2010).
Reuse and combination with package templates. In
MASPEGH]I, pages 1-5. ACM.

von Dincklage, D. and Diwan, A. (2004). Converting Java
classes to use generics. In OOPSLA, pages 1-14.
ACM.

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

	Introduction
	Generics in Pharo
	Requirements for generic parameters
	Reverse Generics in Pharo
	Requirements when generalizing
	Capturing inherited methods

	Implementation
	Case study: Application to the Pharo Stream hierarchy
	Related work
	Conclusion

