
Making Web Programming Simpler:

a Seaside Tutorial

Alexandre Bergel
LERO & DSG, Trinity College Dublin, Ireland

Alexandre.Bergel@cs.tcd.ie

November 15, 2006

1 RegConf: An Application for Registering to a
Conference

The goal of this tutorial is to give you a feeling on creating a web applica-
tion using Seaside. ConfReg is a tool intended to help people to register to a
conference.

Four step are necessary to complete such a registration:

1. A participant has to enter some personal data such as firstname, name,
the institute where she is attached, and her email address. Then,

2. Some information about the hotel are required. For instance a room can
be single or double in an hotel ranked between 1 and 4 stars. A price has
then to be computed.

3. Finally informations regarding the payment are required. Once the credit
card number, the issue date, and the type are entered,

4. A confirmation screen shows a summary of what was entered.

The flow of the application is described in the following figure.

Get personal
info Get hotel info Get Payment

info
Show

Confirmation

is card number valid ?

yes

no

Isolation

1

The dashed rectangle designate the part of the application which is isolated.
This means that once the flow of the running application leaves this box, there
is no way to come back in it, specially using the back button.

2 Application Building Blocks

2.1 The Entry Point: ConferenceRegistration

The control flow of the application has to be described in a task’s go method.
This method also represent the entry point of the application. Thus a name like
ConferenceRegistration sounds appropriated.

Your job: Create a task ConferenceRegistration with a go method that de-
scribes the control flow of the application. The code of this method is:

go
|person hotelInfo|
self isolate: [
person := self openPersonalInformationEditor.
hotelInfo := self openHotelInformationEditorFor: person.
self openPaymentEditorFor: person].

self displayConfirmationFor: hotelInfo

Your job: Start the web server on by executing WAKom startOn: 9090 .

Your job: Create an initialize method on the class side to register your appli-
cation in Seaside under the name regconf .

2.2 Getting User Information: PersonalInformationEditor

All the control flow is defined in the class you previously defined. Getting user
information is implemented as a normal seaside component (i.e., subclass of
WAComponent). Instance variables of this class should reflect the structure
of a user. Pressing the submit button returns to the caller component using
answer: . Fetching the participant’s informations can be done using text fields
and submit button. Here is an example:

2

Your job: Write the method renderContentOn: in PersonalInformationEditor .
Here is what it should look like:

renderContentOn: html
html form: [

html text: ’First name’ ;
textInputWithCallback: [:w| firstname := w]; break.

...
html submitButtonWithAction: [self answer: self createUser]

].

The information passed around different states of the application can be
contained in a dictionary. A proper design requires a class Person for which an
instance is passed around through.

Your job: Create the class Person and define the method createUser .

Your job: Try your application using your favorite web browser. Make it point
to http://localhost:9090/seaside/regconf .

2.3 Getting Hotel Information: HotelInformationEditor

A list of choices is pleasant to fetch informations of the hotel.

3

Your job: Write the class HotelInformationEditor . The method renderCon-
tentOn: should look like:

renderContentOn: html
html form: [

html text: ’Arrival date’ ;
selectFromList: self dates selected: self dates first
callback: [:w| arrivalDate := w]; break.

...
html submitButtonWithAction: [self returnHotelInfo]

].

Your job: Create the class Hotel and create the method returnHotelInfo .

2.4 Payment: PaymentInformation

The payment is valid only if 16 number was provided and if the issue date is
not over.

4

Your job: Write the class PaymentInformation

2.5 Confimation: Confirmation

Once the payment is done, it is nice to show a summary of what was done.

Your job: Write the class CRConfirmation

5

