
Supporting Language Interoperability by Dynamically
Switched Behaviors ?

Jan Kurš1 Jan Vraný1 Alexandre Bergel2

1Software Engineering Group,
Faculty of Informatics,

Czech Technical Universtity in Prague
{kursjan, jan.vrany}@fit.cvut.cz

2Pleiad Lab, Department of Computer Science (DCC)
University of Chile, Chile
http://bergel.eu

Abstract. Software programs are often written in more than one programming
language as the emergence of domain specific languages testifies. Language in-
terpreters are easily embeddable and performances are usually satisfactory. How-
ever, inter-language interaction remains a field tarnished by poor performances.
The reason is that alien objects are wrapped, implying the use of expensive for-
warding and converting mechanism.
We propose to represent alien objects as the set of different states and behaviors it
may have by moving between languages, thus avoiding wrapping and conversion.
We have validated our solution on integration of Java and Smalltalk programming
languages.

Keywords: Programming Language, Virtual Machine, Object Transitions, Java, Smalltalk

1 Introduction

The last decade has seen the advent of domain specific languages and support for multi
languages. Common execution platforms, including the JVM and .Net, are nowadays
fit to execute programs written in more than one programming language. Whereas the
execution mechanism needed to interpret these languages are fairly well accepted [7,
10], the way languages interact and exchanges values still remains an open topic.

The large majority of embedded languages convert or wrap objects when they cross
the language boundary [12]. When an object is passed from one language interpreter to
another, it is either converted or wrapped: values like integers, floats, booleans, charac-
ters, and strings are merely converted while the remaining objects are simply wrapped.

Whereas objects conversion and wrapping is a globally accepted among domain
specific languages and scripting languages, it is the source of several problems and lim-
itations. Consider a plain Java dictionary produced by a Java program. This dictionary is
represented as an instance of java.util.HashMap. A JRuby interpreter will consider this

? This paper was supported by SGS

http://swing.fit.cvut.cz/
http://bergel.eu

object as a wrapped alien object. All calls done on this object implies a conversion or
wrapping of its arguments and a delegation by the wrapper to the real objects. Sending
the JRuby message put(”One”, 1) to the Java dictionary converts the JRuby string ”One”
and the JRuby integer 1 into their corresponding Java values. Delegating messages has
a cost which is significant when intensively use.

A second problem is about object identity. When this Java dictionary is passed a
second time to JRuby, it has to be wrapped using the same wrapper that was used
for the first time. A bijective mapping between alien objects and wrappers has to be
enforced. The wrapper used the second time has to be physically the same than the first
wrapper (i.e., having the same pointer). Again, this comes at a fairly high cost in case
of intensive object passing.

Instead of representing aliens objects as a wrapper in the host language, we propose
to extend the definition of an object as a set of contextualized variable layouts and
behaviour definition.

The proposed approach has been validated on Smalltalk/X programming environ-
ment that runs code in Smalltalk and Java programming languages. We have modi-
fied metaobject protocols in Smalltalk/X in order to implement proposed approach ef-
ficiently.

The contributions of this paper are: identification of the problems associated with
objects crossing the language boundary; introduction of a new approach of moving ob-
jects between languages; description of a prototype implementation. The paper is orga-
nized as follows: The Section 2 introduces simple code and describes problems caused
by language interaction. Our solution is described in Section 3 and the implementation
is outlined in Section 4. The Section 5 discusses, how our approach solves the problems
from the Section 2 and what are the limitations of our approach.

2 Problem

2.1 Example

Consider code in Figure 1 and Figure 2 that demonstrates interaction of Java and
Smalltalk languages. In Figure 1, there is a method sayHello that selects language
according to the locale and print appropriate greeting. The sayHello method expects
a map with translations to be passed as a parameter. In Figure 2, there is a Smalltalk
code that prints greeting using the Java code shown in Figure 1. The Smalltalk creates a
translations as an instance of class Dictionary and then invokes sayHellomethod
to print the greeting.

During the invocation of sayHellomethod on an instance of Multilanguage-
HelloWorld class, an instance of Smalltalk Dictionary is passed to Java method
that expects an instance of java.lang.Map. In that case, we say that the Smalltalk
object crossed the language boundary.

2.2 Problem description

The problem is that the Dictionary cannot be used as parameter of sayHello
method directly – it is a different object from completely different type hierarchy with

2

different set of methods. Yet we intuitively feel, that the Dictionary is Smalltalk
equivalent of java.util.Map. Both are used to store values under arbitrary key.

public class MultilanguageHelloWorld
{

public void sayHello(HashMap dictionary)
{

String key = getLocale().getLanguage();
System.out.println(dictionary.get(key));

}
}

Fig. 1. Java class MultilanguageHelloWorld that can print greetings according
to the locale.

greetings := Dictionary new
at: ’en’ put: ’Hello World’;
at: ’cs’ put: ’Ahoj světe’.

MultilanguageHelloWorld new
sayHello(greetings).

Fig. 2. Smalltalk code interacting with Java object - MultilanguageHelloWorld

If we want to let Java and Smalltalk code from Figure 1 and Figure 2 interact
smoothly, there are two basic approaches; First, do not create an instance of Dic-
tionary – create an instance of java.lang.HashMap class from the very begin-
ning. Or second, if necessary, create a new HashMap object and copy data from the
Dictionary to the HashMap.

In the first case, there may arise problem when the object creation is not under our
control. For example, if the translation mapping is obtained from a third-party library
which cannot be modified. The second approach is time consuming and has higher
memory requirements. We have to take care about the object identity as well: if we
created a new object every time the object is passed from Smalltalk to Java, multiple
Java HashMaps would represent the same Smalltalk Dictionary. Moreover, data
should be kept in sync: if something changed in the Java HashMap, we should update
the Smalltalk Dictionary object.

Usage of a proxy [6] object is third, more advanced approach. The proxy eliminates
problems with data synchronization. Nevertheless problems with identity remains and
we have to map proxies to their subjects which causes extra performance and memory
overhead.

3

3 Our solution

As mentioned before, our approach represents single object in various languages by the
only one physical object with dynamically changed behaviour. Object behaviour in spe-
cific language is described by a structure that we call behaviour object. In other words,
the behaviour object describes behaviour of given object in scope of given language. In
most of languages, the behaviour object is its class, in prototype languages the behavior
object might be represented by object map [3]. Any physical object may be associ-
ated with as many behaviour objects as is the number of languages in which the object
is used. Whenever an object crosses language boundary we dynamically change a be-
haviour object according to the actual language. The greetings object from Figure 2
would have two behaviour objects associated – one for Smalltalk language representing
the Dictionary class and one used in Java representing the java.util.Map.

Next important part of our approach is a mapping of an object state. We will call
an ordered set of object fields as an object layout. A primary object layout is then an
object layout defined by the language where the object was instantiated. We will call a
set of object fields and their respective values as an object state – an object state is an
object layout with values. Similarly, a primary object state is a state of the object with
primary layout. Any method in any language may change an object state. Unfortunately,
each behaviour object may require different object layout. Because we share the same
physical object among languages, a mapping function has to map primary object state
to desired object state and vice versa.

The idea of shared behaviour and mapped state is depicted in Figure 3. In the up-
per left-hand corner there is a physical object java.lang.String composed of
behaviour and state. In the upper right-hand corner there is a similar structure for
Smalltalk String. In the bottom, there is a composed object – one physical object
with both, Smalltalk and Java behaviour. The behaviour is simply added, the state has
to be mapped from Smalltalk to Java.

We will describe our approach more formally now. Let’s have a virtual machine
VM which is able to interpret native language L1 and alien language L2. Let’s have
a program P1 written in L1 and a program P2 written in L2. P2 interacts with P1. As
an input parameter, P1 expects an object O1 with behaviour described by a behaviour
object B1. P2 creates an object O2 with a primary layout A2 = f21, f22, . . . , f2n and
with behaviour described by a behaviour object B2. The object layout A2 with values
is an object state S2. B2 differs from B1. B1 expects an object to have a layout A1 =
f11, f12, . . . , f1m. The object layout A1 with values is an object state S1. We want to
use O2 in P1 as O1. An example could be find in Figure 1, Figure 2 and described in
Section 2.1.

We need to define mapping from S2 to S1. Such mapping has to satisfy two require-
ments. First, an appropriate value has to be determined from S2 when the value of a
field f ∈ A1 is needed. Second, S2 has to be updated accordingly when a field f ∈ A1

is being set. If the layouts of A1 and A2 are identical, the mapping is trivially identity
mapping. If it is not possible to map S2 to S1, O1 and O2 could not be considered to
be equivalent in L1 and L2 – they have too little in common. In the rest of cases, the
mapping has to be specified explicitly.

4

smalltalk::String

STATE MAPPING:

smalltalk -> java

In file:

java/lang/String.class

java.lang.String smalltalk::String
In file:

String.st

Java specific

object layout

Smalltalk specific

object layout

In file:

String.st

In file:

java/lang/String.class

Smalltalk specific

object layout

Java behaviour Smalltalk behaviour

Smalltalk stateJava state

Java behaviour

Smalltalk behaviour

Smalltalk state

Explicitly defined

+

Fig. 3. One physical object with multiple behaviours (in the bottom) is (in the top). The
behaviour is added, the state is mapped.

It is also necessary to provide mapping that maps languages and behaviour object,
i.e., that the object O1 with behaviour of B1 in language L1 will be associated with
behaviour B2 in language L2 and vice versa. Whenever a message is sent to O2 from
L1 (L2 respectively), a message selector will be looked up in B1 (B2 respectively).
During a program execution, various situations may occur:

– When a method is called on O2 from P1, the method is looked up in B1.
– When a field f ∈ A1 of O1 is being read from P1 and A2 is the primary object

layout, then the mapping from S1 to S2 is used to compute the value of f based on
S2.

– When a field f ∈ A1 of O1 is being set from P1 and A2 is the primary object
layout, the mapping from S1 to S2 is used and the S2 is updated.

– When the object O2 is passed from P2 passed to P1 (O2 crosses the language
boundary), B1 is assigned to O2.

– When the object O2 is passed from P1 back to P2, B2 is assigned to O2 again.

5

4 Implementation

We have validated our solution on Java and Smalltalk programming languages. We
use Smalltalk/X virtual machine to interpret Java and Smalltalk language. We employ
metaobject protocol [11] that is implemented in Smalltalk/X VM [14] to change method
and field lookup semantics.

We use standard Smalltalk class as a behaviour object for Smalltalk objects. We
use special Smalltalk object similar to Java class as a behaviour object for Java objects.
Essentially, some objects have two classes – one for Smalltalk and second for Java. We
modified method lookup in order to reflect an existence of multiple behaviour objects
per object as follows:

Lookup>>lookupMethodForSelector:selector
for:receiver
withArguments:argArrayOrNil
context: context

| behaviour |
behaviour := receiver behaviourObjectFor: context language.
behaviour lookupMethodForSelector: selector

withArgumets: argArrayOrNil.
!
Object>>behaviourObjectFor: language

ˆ ObjectRegister instance
getCorrespondingClassOf: self primaryBehaviourObject
inLanguage: language.

!
Object>>primaryBehaviourObject

ˆ self class
!

Lookup object, which is responsible for lookup of appropriate method for foursome
selector, receiver, argument array, context and which is called be-
fore each message send, delegates the lookup to the behaviour object. Behaviour object
knows appropriate method lookup algorithm and which methods are available in current
context. Behaviour object depends on actual language.

Furthermore we modified field accessor functions to be able to apply mapping be-
tween different states as follows:

Lookup>>getFieldForFieldName:fieldName
for:receiver
context: context

| behaviour primaryBehaviour |
behaviour := receiver behaviourObjectFor: context language.
primaryBehaviour := receiver primaryBehaviourObject.
ˆ StateMapping instance

getFieldNamed: fieldName
fromBehaviour: behaviour
toBehaviour: primaryBehaviour
forObject: receiver.

!

6

Lookup object, which is responsible for accessing instance variables and which is called
before each field access, delegates execution to the mapping object, which will deter-
mine particular field value from primary object state.

Last but not least, we introduced global map, where the equivalent types may be
registered together with the state mapping functions as follows:

ObjectRegister>>addBehaviour: behavirouObject
to: primaryBehaviourObject

| behaviourObjectCollection |
behaviourObjectCollection := self at: primaryBehaviourObject.
behaviourObjectCollection add: behavirouObject.

!

A demonstration of our solution’s abilities is depicted in Figure 4 and Figure 5. Equiv-
alent codes and outputs in other languages will be described later in Section 6 which
compares our implementation with another ones.

SOURCE:
string := ’Smalltalk string’.
smalltalkInfo info: string.

// string class
// string hash

javaInfo info: string.
// string.getClass()
// string.hashCode()

java equals: string and: string
// string1 == string2

OUTPUT:

info from Smalltalk world
class: String class
hash: 197479768

info from Java world
class: java.lang.String
hash: 7110656

object equals:
true

Fig. 4. An interaction of Smalltalk String with Java code.

In the Figure 4 there is a code which sends Smalltalk string to (i) Smalltalk object,
(ii) to Java object and (iii) compares the same instances of the string in Java envi-
ronment. The figure is divided into two parts. There is a source in the left and out-
put in the right. The smalltalkInfo’s method info prints a class and hash code
of a parameter. It demonstrates how does object look like in Smalltalk context. The
javaInfo variable is pointer to the class written in Java and compiled to the Java
bytecode. The javaInfo’s method info prints a class and hash code of a parameter
as well. It demonstrates how does object look like in Java context. The javaInfo’s
method equals compares identity of parameters and prints true if objects are iden-
tical, false otherwise. It demonstrates that the same object has the same identity in
alien language. As you can see, the String object has appropriate class and hash in both
of the languages.

The Figure 5 is divided into two parts as well – source in the left and output in the
right. The smalltalkInfo’s method info is the same as in Figure 4. It prints class
and hash code of a parameter. The javaInfo’s method info(Object o) prints a

7

SOURCE:
set := HashSet new with: 1

with: 6.
smalltalkInfo info: set.

// info(Object o)
javaInfo info: set.

//info(Set s)
javaInfo infoSet: set.

//info(Set s)
javaInfo infoHashSet: set.

OUTPUT:

info from Smalltalk world
class: HashSet class
hash: 6537216

info(Object o) from Java world
class: java.util.HashSet
hash: 6537216

infoSet(Set s) from Java world
class: java.util.HashSet
hash: 6537216

infoHashSet(HashSet s) from ...
class: java.util.HashSet
hash: 6537216

Fig. 5. Intraction of Smalltalk object with Java code.

class and hash code of a parameter – it demonstrates that Smalltalk object may be han-
dled as Java object even though java.lang.Object is not anywhere in Smalltalk
class hierarchy. The javaInfo’s method info(Set s) demonstrates that Smalltalk
object may be handled as Java interface. The javaInfo’s method info(HashSet
s) demonstrates that Smalltalk object may be handled as ordinary Java class.

5 Discussion

In case an object is shared between multiple languages and its behaviour is dynamically
changed according to the actual language, following problems are naturally solved:

Object identity The object identity is based on an object pointer comparison. Since
we represent objects by the same pointer in computer memory, no problem arises.

Explicit copy If there is no support for automatic object conversions between, pro-
grammers have to take extra care while passing object across the language bound-
ary. It may happen that an alien object with inappropriate behaviour will be used
that may rise an exception. The error may be prevented by explicit call of a con-
version method. On the other hand, if the behaviour is changed automatically, the
work with alien objects is transparent – they look like native objects. No extra care
has to be taken while passing object across the language boundary.

Data synchronization If objects has to be copied while crossing the language bound-
ary, synchronization of data has to be ensured. Our solution work with the same
data so it is not a deal any more.

Memory overhead Object copy implies memory overhead since all data are dupli-
cated. Proxy objects may be light-weighted as to not consume too much memory,
nevertheless due to necessity to preserve an identity, an extra memory is consumed
by (global) mappings of objects to their respective proxies. Such a mapping is not

8

only memory consuming but also requires proxies to be weak-referenced. Weak
references affects garbage collector performance since all weak references must be
treated specially. In our solution, objects are shared between multiple languages and
so the memory is not occupied redundantly. Behaviour objects does not cause any
memory overhead as well, since they are already present in particular languages.

Questions regarding the reflective facilities may arise.

Object class Object class could be obtained by sending appropriate method (class
in Smalltalk, getClass() in Java). The return value is metaobject which keeps
information about methods, fields, subclasses, super class and others. It could be
said that the return value is the behaviour object (in some form) currently associated
with the given object. Our technique does not affect this functionality. For each
language, appropriate object representing the class is returned. From the point of
any particular language, an object has one class.

Object superclass Object superclass is stored in its behaviour object. Since the cor-
rect behaviour object is always returned, asking it for a superclass will return a
corresponding superclass in scope of given language.

Super sends Since the problems has not arose in previous case, it is not problem to
invoke super send. Nevertheless if Y2 extends X2 in language L2 (with object
layouts AY 2 and AX2) and Y1 exists in language L1 (with object layout AY 1)
and Y1 is used in language L2 as Y2, the Y1 must provide mapping from AB1 to
AB2∪AA2. In other words, Y1 must provide mapping to the complete object layout
of Y2 – including superclasses.

5.1 Implementation limitations

There are several possible implementations of our approach. We have chosen to profit
from metaobject protocol implemented in Smalltalk/X as described in Section 4. An-
other suitable metaobject protocol is provided by Dynamic Language Runtime [5] frame-
work built on top of Common Language Runtime [13]. Unfortunately, it is not possible
to integrate C# and IronRuby [2] or IronPython [1] this way, because existing C# does
not use Dynamic Language Runtime.

In Smalltalk, another techniques like doesNotUnderstand: hook and Java byte-
code instrumentation could be used. The doesNotUnderstand: hook allows me-
thod lookup customization, but this technique negatively influences performance. The
bytecode instrumentation may be used to replace method call in bytecode by another
routine in bytecode that takes multiple behaviour objects into the account. The get field
and set field bytecode instructions may be replaced by similar routine that take state
mapping into the account.

6 Related Work

6.1 JRuby

JRuby [4] is an implementation of Ruby language running on top of Java Virtual Ma-
chine. Generally, JRuby objects may interact with Java code. Nevertheless there are

9

some “pain points”. In case of Strings, they may be shared between JRuby and Java
without any limitations. A class of a String object changes appropriately, a hash code
is computed correctly and an identity is preserved. This demonstrates code depicted in
Figure 6.

SOURCE:
string = "ruby string"
rubyInfo.info(string)

// string.class
// string.hash

javaInfo.info(string)
// string.getClass()
// string.hashCode()

javaInfo.equals(string, string)
// string1 == string2

OUTPUT:

info from Ruby world
class: String
hash: 250737224

info from Java world
class: java.lang.String
hash: 916834583

object equals:
true

Fig. 6. Interaction of Ruby String with Java code.

The code in Figure 6 is written in Ruby which interacts with Java. The code is
equivalent to the code in Figure 4 which is written in Smalltalk. Regarding strings,
there is no difference between abilities of JRuby and our solution.

Generally, JRuby objects may be used as a parameter whenever the parameter is
java.lang.Object because JRuby objects inherit from java.lang.Object.
Moreover, JRuby object may be used as a parameter of Java method in case the param-
eter is Java interface and the Ruby object implements the interface. Yet, if a Java method
expects standard object (subtype of java.lang.Object), exception is raised. This
demonstrates a code depicted in Figure 7.

The code in Figure 7 is written in Ruby which interacts with Java. The code is
equivalent to the code in Figure 5 which is written in Smalltalk. Source is in the left,
output is in the right. As you can see, JRuby allows to pass Ruby object to methods,
which expects java.lang.Object and Java interface, but not HashSet. Our im-
plementation allows to pass Smalltalk object to any of the methods.

6.2 Jython

Jython [9] is an implementation of Python language running on top of Java Virtual Ma-
chine. Jython objects may interact with Java code, but there are some “pain points” as
well. In case of Strings, they may be shared between Jython and Java without limita-
tions. A class of an object is changed appropriately, a hash code is computed correctly
and an identity is preserved. This demonstrates code depicted in the Figure 8.

There is a code written in Jython which interacts with Java objects in the Figure 8.
The code is code equivalent to the code in Figure 4 which is written in Smalltalk. Source
is in the left, output is in the right. Again, regarding strings, there is no difference
between abilities of Jython, JRuby and our solution.

10

set = Set[1, 3, 4, 11]
rubyInfo.info(set)

// info(Object o)
javaInfo.info(set)

// infoSet(Set s)
javaInfo.infoSet(set)

// infoHashSet(HashSet hs)
javaInfo.infoHashSet(set)

info from ruby world
class: Set
hash: 24118174

info(Object o)
class: org.jruby.RubyObject
hash: 24118174

infoSet(Set s)
class:InterfaceImpl
hash: 21279119

infoHashSet(HashSet hs)
cannot convert class
org.jruby.RubyObject to
java.util.HashSet

Fig. 7. Interaction of Ruby object with Java code.

SOURCE:
string = "jython string"
jythonInfo.info(string)

// string.__class__
// string.__hash__()

javaInfo.info(string)
// string.getClass()
// string.hashCode()

javaInfo.equals(string, string)
// string1 == string2

OUTPUT:

info from Jython world
class: <type ’str’>
hash: 1857618127

info from java world
class: java.lang.String
hash: 1857618127

object equals:
true

Fig. 8. Interaction of Jython String with Java code.

Yet, it is not easy to use Jython object as parameter of Java method. There is a
mechanism called Object Factory in the Jythonbook [8] but it requires lots of code
overhead. The mechanism cannot be used in all use cases. Generally, it is not possi-
ble to pass Jython’s ImmutableSet instance into the Java method expecting either
java.util.Set or java.util.HashSet. This is a difference between our solu-
tion and Jython, since our solution is not limited in these use cases.

7 Conclusion

In this paper we have presented a dynamic behaviour switching mechanism to support
language interoperability. When an object is passed from one programming language
to another, its behaviour is dynamically switched to what the other language expects,
allowing programmers to work with alien objects in a natural way. The same physical
object is used in all languages, therefore there is no runtime overhead caused by copying

11

objects and by maintaining object identity. A mapping from class in one language to
corresponding class in the other language is provided by user as well as a mapping of
object state.

References

1. IronPython, August 2010.
http://ironpython.net/.

2. IronRuby, August 2010.
http://ironruby.net/.

3. Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation of SELF — a
dynamically-typed object-oriented language based on prototypes. In Proceedings OOPSLA
’89, ACM SIGPLAN Notices, volume 24, pages 49–70, October 1989.

4. Charles Nutter et. al. JRuby Project, August 2010.
http://jruby.org/.

5. Bill Chiles and Alex Turner. Dynamic Language Runtime, August 2010.
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs.

6. Erich Gamma, Richard Helm, John Vlissides, and Ralph E. Johnson. Design patterns:
Abstraction and reuse of object-oriented design. In Oscar Nierstrasz, editor, Proceedings
ECOOP ’93, volume 707 of LNCS, pages 406–431, Kaiserslautern, Germany, July 1993.
Springer-Verlag.

7. Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt. Inter-language reflection
– a conceptual model and its implementation. Journal of Computer Languages, Systems and
Structures, 32(2-3):109–124, July 2006.

8. Josh Juneau, Jim Baker, Victor Ng, Leo Soto, and Frank Wierzbicki. Jython Book v1.0
documentation, March 2010.
http://www.jython.org/jythonbook/en/1.0/.

9. Jython, February 2011.
www.jython.org.

10. Jevgeni Kabanov and Rein Raudjärv. Embedded typesafe domain specific languages for Java.
In PPPJ’08: Proceedings of the 6th International Symposium on Principles and Practice of
Programming in Java, pages 189–197, Modena, Italy, 2008. ACM.

11. Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject Proto-
col. MIT Press, 1991.

12. Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language pro-
grams. SIGPLAN Not., 42(1):3–10, 2007.

13. E. Meijer and J. Gough. Technical overview of the common language runtime, 2000.
14. Jan Vraný. Supporting multiple languages in virtual machines. Dissertation thesis, Czech

Technical University, December 2010.

12

http://ironpython.net/
http://ironruby.net/
http://jruby.org/
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs
http://www.jython.org/jythonbook/en/1.0/
www.jython.org

	Supporting Language Interoperability by Dynamically Switched Behaviors
	Jan Kurš1 Jan Vraný1 Alexandre Bergel2

