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Abstract
Mondrian, an open-source visualization engine, uses caching
mechanism to avoid redundant computation. These caches
are structured along Mondrian purpose: generating static
two-dimensional visualizations. Particularly in the case of
Mondrian, we have noticed that the caches are meaningless
for the evolution being made on Mondrian. Using aspect-
oriented programming, we have refactored these caches
into well defined aspects to address the evolution problem.
We have achieved it without paying the price of runtime
problems.

1. Introduction
Dealing with emerging requirements in a target application
is probably one of the most difficult challenges in software
engineering [12].

This paper presents a solution to a maintenance problem
we recently faced while developing the Mondrian application.
Mondrian is an agile visualization engine implemented in
Pharo, and is used in more than a dozen projects1. As in
many software developments, new requirements of several
increasing number of clients impact on design decisions that
were hold for years.

1 http://moosetechnology.org/tools
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Mondrian uses simple two-dimensions rendering to graph-
ically visualize a target domain. Mondrian is almost exclu-
sively used to visualize software metrics and lets the user
produce a wide range of visual representations2. One of the
strong design decision that Mondrian holds is the structure of
its multiple cache mechanisms.

Mondrian has 9 caches spread over the graphical ele-
ment hierarchy. The caches aim to quickly render two di-
mensional widgets, graphically composed of rectangle and
line shapes. Mondrian caches are instances of the memo-
ization technique3. Sending twice the same message returns
the same value if there is no side effect that impacts on the
computation.

Unfortunately, the new requirements of Mondrian defeats
the purpose of some caches. One example is the bounds
computation to obtain the circumscribed rectangle of a two-
dimensional graphical element. This cache is senseless in
a 3D setting. Bypassing the cache results in a complex
extension of Mondrian.

We have first identified where the caches are implemented
and how they interact with the rest of the application. For each
cache, we marked methods that initialize and reset the cache.
We have subsequently undertaken a major refactoring of
Mondrian core: we have implemented a prototyping version
of Mondrian, in which caches are externalized from the
base code. We implement our refactoring with a customized
aspect-based mechanism. We were able to modularize the
cache while preserving the overall architecture and Mondrian
performances were not affected with the refactoring process.

The contributions of this paper are: (i) identification of
memoizing cross-cutting concern and (ii) refactorization of

2 http://www.moosetechnology.org/docs/visualhall
3 http://www.tfeb.org/lisp/hax.html#MEMOIZE
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these cross-cutting concerns into modular and pluggable
aspects.

The paper is structured as follows. Section 2 shows the
problem we faced with when trying to evolve Mondrian.
Section 3 describes the aspect-based solution we adopted.
Section 4 presents the impacts of our solution on Mondrian.
Section 5 briefly summarizes the related work. Section 6
presents some conclusions.

2. Making Mondrian Evolve
This section details a maintenance problem we have faced
with when developing Mondrian.

2.1 Turning Mondrian into a framework
Mondrian4 is an agile visualization library [11]. A domain
specific language is provided to easily define interactive visu-
alizations. Visualizations are structured along a graph struc-
ture, made of nested nodes and edges. Mondrian is a crucial
component, used in more than a dozen independent projects.
To meet clients performance requirements, Mondrian authors
are focused on providing a fast and scalable rendering. To
that purpose, Mondrian contains a number of caches to avoid
redundant code executions.

Mondrian is on the way to become a visualization engine
framework more than a library as it is currently. It is now used
in situations that were not originally planned. For example, it
has been used to visualize the real-time behavior of animated
robots5, 3D visualizations6, whereas it has been originally
designed to visualize software source code using plain 2D
drawing [8]. The caches that are intensively used when
visualizing software are not useful and may even be a source
of slowdown and complexity when visualizing animated
robots.

2.2 Memoization
Memoization is an optimization technique used to speed up
an application by making calls avoid repeating the similar pre-
vious computation. Consider the method absoluteBounds

that any Mondrian element can answer to. This method deter-
mines the circumscribed rectangle of the graphical element:

MOGraphElement>>absoluteBounds

absoluteBoundsCache

ifNotNil: [ ^ absoluteBoundsCache ].

^ absoluteBoundsCache :=

self shape absoluteBoundsFor: self

The method absoluteBoundsFor: implements a heavy com-
putation to determine the smallest rectangle that contains all
the nested elements. Since this method does not perform any
global side effect, the class MOGraphElement defines an instance
variable called absoluteBoundsCache which is initialized at the

4 http://www.moosetechnology.org/tools/mondrian
5 http://www.squeaksource.com/Calder.html
6 http://www.squeaksource.com/Klotz.html

first invocation of absoluteBounds. Subsequent invocations
will therefore use the result previously computed.

Obviously, the variable absoluteBoundsCache needs to be
set to nil when the bounds of the element are modified (e.g.,
adding a new nested node, drag and dropping).

2.3 Problem
Mondrian intensively uses memoization for most of its com-
putation. A user-performed interaction that leads to an update
invalidates the visualization, since the cache need to be re-
computed. These memoizations were gradually introduced
over the development of Mondrian (which started in 2006).
Each unpredictable usage, such as for example visualization
of several inner nodes, leaded to a performance problem that
has been solved using a new memoization. There are about
32 memoizations in the current version of Mondrian.

These caches have been modified along the common
usage of Mondrian. Visualizations produced are all static
and employ colored geometrical objects.

Extending the range of applications for Mondrian turns
some of the caches senseless. For example absoluteBoundsCache

has no meaning in the three-dimensional version of Mondrian
since the circumscribed rectangle is meaningful only with
two dimensions.

Using delegation. We first tried to address this problem by
relying only on explicit objects, one for each cache. This
object would offer the needed operations for accessing and
resetting a cache.

As exemplified with the method absoluteBounds given
above, the caches are implemented by means of dedicated
instance variables defined in the Cache class. That is to say,
each cache is associated with an instance variable. In this
way, a variable of the Cache class, called generalCache, is
defined in the MOGraphElement class. Through this variable the
different caches can be accesed with the method cacheAt:(

key) where key is a string with the name of the cache.
Figure 1 illustrates this situation where a graph element

has one instance of the Cache class, itself referencing to many
instances of CacheableItem, one for each cache.

Below we show how the method absoluteBounds is written
following this approach:

MOGraphElement>>absoluteBounds

(generalCache cacheAt: 'absoluteBoundsCache')
ifCacheNil: [

(generalCache cacheAt: 'absoluteBoundsCache')
putElement: (self shape absoluteBoundsFor: self)].

^ (generalCache cacheAt: 'absoluteBoundsCache')
getInternalCache.

As we observe, with this approach the different instance
variables related with the caches are replaced by a unique
variable called generalCache. On the other hand, the legibility
of the method is deteriorated as well as the performance.

Significant overhead. This modularization solely based on
delegating messages has a significant overhead at execution

2 2011/8/1
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time due to the additional indirection. The separation of this
concern is not a trivial problem. Specifically, when we use
this solution, the caches mechanism was 3 to 10 times slower,
with the delay proportional to the number of elements.

2.4 Requirement for refactoring
Refactoring Mondrian is a task to be performed carefully. In
particular, the refactoring has the following constraints:

• All cache accesses have to be identified. This is essential
to have all the caches equally considered.

• No cost of performance must be paid, else it defeats the
whole purpose of the work.

• Readability must not be reduced.

3. Aspect-based Refactoring
The goal of the refactoring is the separation of the Cache
Concern from the four essential classes of Mondrian: MO-
GraphElement and its subclasses (MOEdge, MONode, and
MORoot). These classes have 235 methods and more than
1000 lines of codes in total.

3.1 Identifying caches
The first step of the refactoring is identifying the caches.
This initial identification of the caches is done with the in-
formation provided by the developers of Mondrian and is
based on knowing the variables related to the caches and the
places where they are used. The caches are mostly identified
by browsing the methods in which the caches variables are
referenced and accessed. Nine different caches are found in
Mondrian: cacheShapeBounds, cacheForm, boundsCache,
absoluteBoundsCache, elementsToDisplayCache, lookupN-
odeCache, cacheFromPoint, cacheToPoint, and cacheBounds.
Each of them has a different internal structure according to
what is stored: boundsCache will hold an instance of the class
Rectangle and cacheForm an instance of a bitmap Forms, for
example.

After this initial identification, the fragment of codes in
which the caches are used are grouped together based on the
purpose of its use (e.g., saving information, obtaining the data
stored). Each group is associated with different activities:

• Initialize and reset the cache: the fragments of code in this
group initialize or reset a cache variable putting them in
nil or creating an instance of an object.

• Retrieve the cache value: this group obtains the informa-
tion that is saved in a cache.

• Store data in the cache: the code fragments grouped here
store information into a cache variable.

These groups allow the identification of code patterns that
are repeated when using the caches. An aspect refactoring is
associated for each found pattern [? ]. These code patterns
are described in the following subsections.

3.2 Pattern description
We identified 5 code patterns based on Mondrian source code
and we describe them below. Each pattern is described with
a relevant typical occurrence, the number of occurrences we
found in Mondrian and an illustration.

Reset Cache. A cache has to be invalidated when its content
has to be updated. We refer to this action as reset. The code
to express a reset is cache:=resetValue where resetValue and
the initial value the cache should have. Typically, the reset-
Value depends on the type of the stored value. It could be nil,
an empty dictionary, or a particular value (e.g., 0@0). Eigh-
teen occurrences of this pattern are found in Mondrian. We
found that in some occurrences the reset of the caches is per-
formed before the logic of the method, and other methods in
which the reset must be done after. For example, the method
MOGraphElement>>shapeBoundsAt:put: resets the caches abso-
luteBoundsCache and boundsCache before modifying the
cache cacheShapeBounds. In contrast, the method MONode

>>translateBy:bounded: resets the caches boundsCache and
absoluteBoundsCache after executing most of the statements
of the method.

Consider the method MOGraphElement>>resetCache. This
method is called whenever the user drags and drops a graph-
ical element. In this method, the Reset Cache pattern is re-
peated in four occasions to reset the caches boundsCache, ab-
soluteBoundsCache, cacheShapeBounds, and elementsToDis-
playCache. In this case, the reset of the caches can be
done before or after the execution of the methods resetEle-
mentsToLookup and resetMetricCaches.

MOGraphElement>>resetCache

self resetElementsToLookup.

boundsCache := nil.

absoluteBoundsCache := nil.

cacheShapeBounds :=SmallDictionary new.

elementsToDisplayCache := nil.

self resetMetricCaches

Lazy Initialization. In some situations it is not relevant to
initialize the cache before it is actually needed. This happens
when a graphical element is outside the scrollbar visual frame:
no cache initialization is required for a graphical element
if the element is not displayed. These caches are relevant
only when the user actually sees the element by scrolling
the visualization. Typically, the structure of this pattern
is: ˆ cache ifNil:[cache:=newValue]. Mondrian contains
five occurrences of a lazy cache initialization. Consider the
method bounds:

MOEdge>>bounds

^ boundsCache ifNil:[boundsCache:= self shape

computeBoundsFor: self ].

The circumscribed rectangle is returned by computeBoundsFor:

and is performed only when an edge is actually visible
(bounds is used in drawOn:, the rendering method).

3 2011/8/1



Figure 1. Cache behavior delegation.

Cache Initialization. This pattern represents a situation in
which a value is assigned to a cache. The structure of the
pattern is only an assignment: cache := aValue. This pattern
is found in three occasions. Consider the method cacheCanvas:

MOGraphElement>>cacheCanvas: aCanvas

cacheForm:= aCanvas form

copy: ((self bounds origin + aCanvas origin-(1@1))

extent: (self bounds extent + (2@2))).

The method cacheCanvas: is invoked only during testing
in order to verify some characteristics of the caches such as
their effectiveness.

Return Cache. This pattern shows the situation in which a
cache is accessed. The structure of the pattern is the return
of the cache: return cache. This pattern is found in four
occasions. Next, the method shapeBounds is presented as an
example in which cacheShapeBounds is accessed.

MOGraphElement>>shapeBounds

^ cacheShapeBounds

Cache Loaded. This pattern checks whether one cache or
more are initialized or conversely, if they are not nil. So,
the structure of the pattern for a single cache is cache !=
nil. This pattern is found in two occasions. Next the method
isCacheLoaded is presented as an example of this pattern.

MOGraphElement>>isCacheLoaded

^cacheForm notNil.

Additionally, Table 1 gives the occurrences of each pattern
in the MOGraphElement hierarchy, the methods involved in each
pattern, and the caches related with a pattern.

Figure 2 shows the distribution of the caches over the main
Mondrian classes, methods in which the caches are used, and
the classes where each cache is defined. As we observe, the
caches are used and defined across the whole class hierarchy.

3.3 Cache concerns as aspects
Once the code patterns are identified, we set up strategies to
refactor them. The goal of the refactorization is the separation

of these patterns from the main code without changing the
overall behavior, enforced by an extended set of unit tests.

The refactoring is performed by encapsulating each of
the nine caches into an aspect. Aspect definition weaving is
achieved via a customized AOP mechanism based on code
annotation and source code manipulation.

The refactoring strategy used is: for each method that in-
volves a cache, the part of the method that directly deals
with the cache is removed and the method is annotated. The
annotation is defined along the cache pattern associated to
the cache access removed from the method. The annota-
tion structure is <patternCodeName: cacheName> where
cacheName indicates the name of the cache to be considered
and patternCodeName indicates the pattern code to be gener-
ated. For example, the annotation <LazyInitializationPattern:
#absoluteBoundsCache> indicates that the Lazy Initializa-
tion pattern will be “weaved” for the cache absoluteBound-
sCache in the method in which the annotation is defined.

The weaving is done via a customized code injection
mechanism. For each annotation a method may have, the code
injector performs the needed source code transformation to
use the cache. Specifically, the weaving is achieved through
the following steps:

1. A new method is created with the same name that the
method that contains the annotation but with the prefix
“compute” plus the name of the class in which is defined.
For example, given the following method:

MOGraphElement>>absoluteBounds

<LazyInitializationPattern: #absoluteBoundsCache>

^ self shape absoluteBoundsFor: self

a new method called computeMOGraphElementAbsoluteBounds

is created.

2. The code of the original method is copied into the new
one.

MOGraphElement>>computeMOGraphElementAbsoluteBounds

^ self shape absoluteBoundsFor: self
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Cache Occurrences Methods involved Caches involved
Reset Cache 18 10 boundsCache, abso-

luteBoundsCache,
cacheShapeBounds, ele-
mentsToDisplayCache,
cacheForm, cacheFrom-
Point, cacheToPoint

Lazy Initialization 5 5 elementsToDisplayCache,
absoluteBound-
sCache, boundsCache,
cacheBounds

Cache Initializa-
tion

3 3 cacheForm, cacheFrom-
Point, cacheToPoint

Return Cache 4 4 cacheShapeBounds,
cacheForm, cacheFrom-
Point, cacheToPoint

Cache Loaded 2 2 cacheForm, cacheFrom-
Point, cacheToPoint

Total 32 24

Table 1. Cache Concern scattering summary.

absoluteBounds
bounds
elementsToDisplay
cacheCanvas
isCacheLoaded
resetAbsoluteBoundsCacheRecursively
resetCache
resetElementsToDisplayCache
resetFormCache
resetFormCacheRecursively
resetFormCacheToTheRoot
shapeBoundsAt:put:
shapeBounds

-cacheShapeBounds
-cacheForm
-boundsCache
-absoluteBoundsCache
-elementsToDisplayCache
-lookupNodeCache

MOGraphElement

bounds
isCacheLoaded
resetCache
cacheFromPoint:
cacheToPoint:
cacheFromPoint
cacheToPoint

-cacheFromPoint
-cacheToPoint

MOEdge

cacheForm
scaleBy:
translateBy:bounded:

 
MONode

bounds
-cacheBounds

MORoot

LI

CI

ResC

RetC

LI
CL

ResC
CI

RetC

RetC
ResC

LI

LI: lazy initialization
CI: cache initialization
ResC: reset cache
RetC: return cache
CL: cache loaded

Figure 2. Pattern locations in the MOGraphElement hierarchy
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3. The code inside the original method is replaced by the
code automatically generated according to the pattern
defined in the annotation. This generated method contains
a call to the new one of the Step 1.

MOGraphElement>>absoluteBounds

absoluteBoundsCache

ifNotNil: [ ^ absoluteBoundsCache].

^ absoluteBoundsCache:=

(self computeMOGraphElementAbsoluteBounds)

In order to automatically generate the code to be injected,
the code weaver uses a class hierarchy (Figure 3), rooted in
the abstract CachePattern class. CachePattern class contains
the methods needed to process annotations (called pragmas in
the Pharo terminology). Each subclass overrides the method
generateMethodWith: to perform the source code manipula-
tion.

Next, we present the refactorings applied to each code
pattern.

Reset Cache. In order to refactor this pattern each state-
ment that resets a cache was extracted using an annotation.
The annotation contains the cache to be resetted. Since in
some cases the resets are done at the beginning of a method
and others at the end, a hierarchy of Reset Cache pattern
is created. Figure 3 shows this hierarchy, which is com-
posed of the classes AbstractResetCachePattern, BeforeRe-
setCachePattern, and AfterResetCachePattern. The anno-
tations are defined in the classes at the bottom of the hi-
erarchy as <BeforeResetCachePattern: cacheName> and
<AfterResetCachePattern: cacheName> respectively. For
example, in the case presented in Section 3.2 of the method
resetCache, an annotation is defined for each reset of a cache
leaving a cleaner code in the method. In this case, all the
resets are done before the method call, so the used annota-
tions are the ones defined by BeforeResetCachePattern. Even
though the order of calls is changed (in comparison with
the original method), the method behavior is not modified.
The code to be generated will reset the cache defined in the
annotation. Following, the refactored code is presented:

MOGraphElement>>resetCache

<BeforeResetCachePattern: #absoluteBoundsCache>

<BeforeResetCachePattern: #elementsToDisplayCache>

<BeforeResetCachePattern: #boundsCache>

<BeforeResetCachePattern: #cacheShapeBounds>

self resetElementsToLookup.

self resetMetricCaches

The methods resetElementsToLookup and resetMetric-
Caches perform additional actions that do not involve the
cache variables. For this reason they remain in the method
resetCache.

After the code injection, the method resetCache is trans-
formed into:

MOGraphElement>>resetCache

absoluteBoundsCache:=nil.

elementsToDisplayCache:=nil.

boundsCache:=nil.

cacheShapeBounds:=SmallDictionary new.

self computeMOGraphElementresetCache

where the method computeMOGraphElementresetCache is:

MOGraphElement>>computeMOGraphElementresetCache

self resetElementsToLookup.

self resetMetricCaches

This mechanism of injection of the generated code is the
same for the rest of the patterns.

Lazy Initialization. To refactor this pattern the precondi-
tion checking is contained into an annotation defined as
<LazyInitializationPattern: cacheName>. Given that the
cache is initialized with a value when the precondition fails,
the original method is modified to return this value. For ex-
ample, in the case of the method bounds introduced in the
previous section, the code related to the cache is extracted
using the annotation and only the value to initialize the cache
remains in the method as shown the code below:

MOEdge>>bounds

<LazyInitializationPattern: #boundsCache>

self shape computeBoundsFor: self.

Thus, the code to be generated in this example will be
boundsCache ifNotNil: [ ˆ boundsCache]. ˆ boundsCache:=
computeMOEdgeBounds.

Cache Initialization. The refactorization of this cache
is similar to the last one. Given that the structure of the
pattern is an assignment, the first section of the assign-
ment (cacheName:=) will be generated automatically by
the weaver using an annotation <CacheInitializationPattern:
cacheName>. The value at which the cache is initialized con-
stitutes the method body. In the case of the example presented
in Section 3.2, the refactored code is shown below:

MOGraphElement>>cacheCanvas: aCanvas

<CacheInitializationPattern: #cacheForm>

(aCanvas form copy: ((self bounds origin + aCanvas

origin

- (1@1)) extent: (self bounds extent + (2@2)))).

Return Cache. In this refactorization the entire return
clause is encapsulated by the annotation. The annotation
is defined as <ReturnCachePattern: cacheName>. Follow-
ing, the refactored code of the example shown in the last
section is presented:

MOGraphElement>>shapeBounds

<ReturnCachePattern: #cacheShapeBounds>

Cache Loaded. In order to refactor this pattern the cache
checking is encapsulated by an annotation defined as <Cache-
LoadedPattern: cacheName>. The code generated contains a
sentence in which the checking is done for all the caches
defined in the annotations of this pattern contained in a
method. In the case of the example presented in Section 3.2,
the refactored code is shown below:
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Figure 3. Pattern hierarchy.

MOGraphElement>>isCacheLoaded

<CacheLoadedPattern: #cacheForm>

Using restructurings based on the patterns, the Cache
Concern is refactorized properly in more than 85% of the
methods of the MOGraphElement hierarchy that uses one or
more caches. Some uses of the caches are not encapsulated
by means of cache patterns because (1) the code belongs to a
cache pattern but the code related with the cache is tangled
with the main concern, or (2) the code does not match with
any of the described patterns. For example, the following
method

MOGraphElement>>nodeWith: anObject ifAbsent: aBlock

| nodeLookedUp |

lookupNodeCache ifNil: [ lookupNodeCache :=

IdentityDictionary new ].

lookupNodeCache at: anObject ifPresent: [ :v | ^ v ].

nodeLookedUp := self nodes detect: [:each | each

model = anObject ] ifNone: aBlock.

lookupNodeCache at: anObject put: nodeLookedUp.

^ nodeLookedUp

could not be refactored because the cache lookupNodeCache
is used to make different computations across the whole
method by which is closely tied to the main concern. These
uses of the caches that are not encapsulated by using the de-
scribed patterns are also refactored by means of annotations.
For these cases a Generic AOP pattern is used. The used
annotations have the structure <cache: cacheName before:
beforeCode after: afterCode > where cache indicates the
name of the cache to be injected. The before and after clauses
indicate the source code that will be injected and when it will
be injected in regard to the execution of the method. That is
to say, the code inside the original method will be replaced
by the code pointed out in the before clause of the annota-
tion, a call to the new method will be added, and the code
contained in the after clause of the annotation will be added
at the end. For example, the refactorization of the method
presented previously is

MOGraphElement>>nodeWith: anObject ifAbsent: aBlock

<cache: #lookupNodeCache before:' lookupNodeCache

ifNil: [lookupNodeCache := IdentityDictionary new ].

lookupNodeCache at: anObject ifPresent: [ :v | ^ v ].

^lookupNodeCache at: anObject put: (' after: ' )'>
| nodeLookedUp |

nodeLookedUp := self nodes detect: [:each | each

model = anObject ] ifNone: aBlock.

^ nodeLookedUp

As we see, all the code with references to the cache lookupN-
odeCache are encapsulated into the before clause of the an-
notation.

4. Results
The presented patterns are used to compose the caches
behavior improving the maintenance of the system. In this
line, the contribution of the approach is twofold. First, the
mechanism of encapsulation and injection could be used to
refactor the current Mondrian caches (and also those ones
that may be introduced in the future) improving the code
reuse. Second, the code legibility is increased because the
Cache Concern is extracted from the main concern leaving a
cleaner code.

The cache composition is achieved during the injection
phase. As the different pieces of code that are related to the
cache are encapsulated by means of the patterns restructur-
ings, an implicit process of division of the complexity of
the caches behavior is achieved. That is to say, this kind of
approach helps the developer by splitting the caches behav-
ior in small fragments of code. These fragments of code are
encapsulated by the patterns restructurings and they are fi-
nally composed during the injection phase. For example, the
functionality related to the cache absoluteBoundsCache is
refactored by the patterns Reset Cache, Lazy Initialization,
and Cache Initialization.
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One of the main priorities of the refactoring is to not affect
the performance of the system. For this reason a group of
benchmarks were measured in order to evaluate the cache
performance when a set of nodes and edges are displayed.
The variations of performance between the system before and
after applying refactorings that we observe are not significant.
That is because, in general, the code after the injection of the
caches is the same that the original code before the Mondrian
refactoring. There were only minor changes such as the
reorder of statements in some methods (without changes in
the behavior) and the deletion of methods with repeated code.
Figure 4 shows the details of the benchmarks results, in which
the time execution to the nodes and edges visualization were
calculated. The results of both benchmarks were average over
a total of 10 samples. As we see, as was expected, there are
not remarkable variations during these displaying.

Using cache in the main logic. This experience has been
the opportunity to think again on the implementation of
Mondrian. We found one occurrence where a cache variable
is not solely used as a cache, but as part of main logic
of Mondrian. The method bounds contains an access to
boundsCache:

MOGraphElement >>bounds

...

self shapeBoundsAt: self shape ifPresent: [ :b | ^

boundsCache := b ].

...

MOGraphElement >>translateAbsoluteCacheBy: aPoint

absoluteBoundsCache ifNil: [ ^ self ].

absoluteBoundsCache := absoluteBoundsCache

translateBy: aPoint

The core of Mondrian is not independent of the cache
implementation. The logic of Mondrian relies on the cache
to implement its semantics. This is obviously wrong and this
situation is marked as a defect7.

Singularity of #displayOn: Displaying a node uses all the
defined caches to have a fast rendering. We were not able to
define displayOn: as the result of an automatic composition.
The main problem is that this method uses intensively the
cache to load and save data during its execution. For this
reason, the code related to the cache is very scattered across
the method making the restructuration by mean of cache
patterns almost unviable. So, this method was restructured
using the Generic AOP pattern.

Reordering. The injection mechanism may reorder state-
ments in the instrumented method. This is the case of the
reset method (which was presented in the previous section).
As shown, in this case the caches are resetted at the be-
ginning of the method and after that the methods resetEle-
mentsToLookup and resetMetricCaches are invoked in con-

7 http://code.google.com/p/moose-technology/issues/

detail?id=501

trast with the original method in which the former was in-
voked at the beginning and the former at the end. Even though
the order of calls is changed, the behavior of the method is
not modified. The consistent behavior was manually and au-
tomatically checked.

5. Related Work
Our approach is not particularly tied to our code weaver.
An approach called AspectS has been proposed for Squeak
Smalltalk [7]. AspectS is a general purpose AOP language
with dynamic weaving. Unfortunately, it does not work on
Pharo, the language in which Mondrian is written. A new
aspect language for Pharo is emerging8, we plan to use it in
the future.

Several approaches have been presented in order to refac-
tor and migrate object-oriented systems to aspect-oriented
ones. Some of these approaches use a low level of granularity
focusing on the refactorization of simple languages elements
such as methods or fields [1, 3, 5, 13, 15]. On the other hand,
other approaches are focused on a high level of granularity.
This kind of approaches tries to encapsulate into an aspect an
architectural pattern that represents a cross-cutting concern.
That is, these approaches are focused on the refactorization
of a specific type of concern. Our work is under this category.

Others works that deal with the refactorization in a high
level of granularity are discussed next. Da Silva et al. [4]
present an approach of metaphor-driven heuristics and asso-
ciated refactorings. The refactorization of the code proposed
is applicable on two concerns metaphors. A heuristic repre-
sents a pattern of code that is repeated for a specific concern
and it is encapsulated into an aspect by means of a set of
fixed refactorings. Similarly to the last work, Van der Rijst
et al. [10, 14] propose a migration strategy based on cross-
cutting concern sorts. With this approach the crosscutting
concerns are described by means of concern sorts. In order
to refactor the code, each specific crosscutting concern sort
indicates what refactorings should be applied to encapsulate
it into an aspect.

Hannemman et al. [6] present a role-based refactoring
approach. Toward this goal the crosscutting concerns are
described using abstract roles. In this case the refactorings
that are going to be used to encapsulate a role are chosen by
the developer in each case. Similar to us, this approach allows
the reuse of the description of a crosscutting concern however,
it does not mention how the code should be refactored.

Finally, AOP has been used for some mechanisms of cache
in the past. Bouchenak et al. [2] present a dynamic web
caching content approach based on AOP. In order to achieve
this goal, a set of weaving rules are specified using AspectJ
as aspect-oriented language. In this same line, Loughran and
Rashid [9] propose a web cache to evaluate an aspect-oriented
approach based on XML annotations.

8 http://pleiad.cl/phantom
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Figure 4. Benchmark of performance.

6. Conclusion
This paper presents a software evolution problem in which
early made decisions become less relevant. We have solved
this problem by using aspects to encapsulate and separate
problematic code from the base business code. The refactor-
ing has been realized without a performance cost. All Mon-
drian memoization implementations have been refactored
into a dedicated aspect.
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