
Debugging Performance Failures

Juan Pablo Sandoval, Alexandre Bergel

Department of Computer Science (DCC)
University of Chile, Santiago, Chile

ABSTRACT
An application execution profile has a meaning only when it is
compared to another profile obtained from a slightly different
executing context. Unfortunately, current profilers do not
efficiently support performance comparison across multiple
profiles. As a consequence, profiling multiple executions is
often realized in an ad-hoc fashion, often resulting in missing
opportunities for caching.

We propose multidimensional profiling as a way to repeat-
edly profile a software execution by varying some variables
of the execution context. Having explicit execution variation
points is key to precisely understand how a particular feature
performance evolves along the version history of the software.

1. PROFILING EVOLUTION
Measuring the execution performance of an application is

essentially realized by varying some parameters and profiling
the program execution for each variation. Identifying which
method is slower, for which argument and on which object
is crucial to precisely understand the reason of a slow or fast
execution. Moreover, an optimal execution is often used as
a target for not-so-optimal executions. Caches are inserted
and optimizations are implemented until the performance
of a not-so-optimal execution is close enough to the optimal
one.

Unfortunately, this work is essentially realized by software
engineers in an ad-hoc manner. Set of benchmarks are man-
ually constructed to measure the application performance
for each slight variation. Typical variations includes the size
of the data input, version of an algorithm or a particular
sequence of function executions. As surprising as it may
seem, current profilers are either unable to compare multiple
executions or offers superficial comparison facilities.

Before going into detail about the existing profilers, con-
sider the following situation that was faced during the devel-
opment of Mondrian1, an agile visualization engine. Mon-
drian displays an arbitrary set of data as a graph, in which

1http://moosetechnology.org/tools/mondrian

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DYLA’12, June 12, 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1275-2/12/06 ...$10.00.

each node and edge has a graphical representation shaped
with metrics and properties computed from the data.

About two years ago, an optimization was implemented
and made Mondrian 30% faster. The optimization was care-
fully measured with a set of benchmarks.

During the last two years, Mondrian has been in a contin-
uous development. As Mondrian has gained new users, new
requirements have been implemented to satisfy user wishes.
Whereas the range of offered features has gotten wider, the
performance of Mondrian have slowly decreased for some of
the benchmarks. The optimization that made Mondrian 30%
faster seems to have somehow vanished.

Tracking down the software changes that are responsible
for this loose of performance is not easy, essentially because
of the lack of adequate tools. Consider the commonly-used
Java profilers2. xprof3 is built in the Java virtual machine
and is essentially used by the Just-in-time compiler. hprof4

is the profiler promoted by Oracle. Both xprof and hprof
report the CPU time consumption for each method for an
application execution. The comparison of two profiles to
identify the difference of execution has to be done manually,
which is a tedious and laborious task.

JProfile5 and YourKit6 are two popular commercial profil-
ers. Both support a comparison of profiles by indicating the
difference in absolute and relative CPU consumption time of
each method. Although useful to keep track of the overall per-
formance, knowing the difference of method execution time
is insufficient to understand the reasons of the performance
variation. In addition, the call graph may significantly differ
from two profiles, which seriously complicate the analysis.

Understanding the reason of a slow or fast execution,
caused by the software evolution, the following questions
are relevant:

• How the performance has evolved over different software
revisions?

• Which software version is the cause of a drop of per-
formance?

When applied to our example with Mondrian, xprof, hprof,
JProfiler and YourKit are helpless to answer any of these

2We have conducted all our experiments in the Pharo pro-
gramming language. It is however easy to guess how it would
have been perform with Java profilers.
3http://bit.ly/xprofiler
4http://bit.ly/hprofiler
5http://www.ej-technologies.com
6http://www.yourkit.com

1

http://moosetechnology.org/tools/mondrian
http://bit.ly/xprofiler
http://bit.ly/hprofiler
http://www.ej-technologies.com
http://www.yourkit.com

Figure 1: Multidimensional profiling of Mondrian (6 benchmarks are run for 11 software versions).

questions. The reason is that the profile comparison exercised
by JProfiler and YourKit does not capture all the variables
that these questions refer to, such as the benchmarks and
software versions. Being able to profile an application along
several variables is the topic of our work.

2. MULTIDIMENSIONAL PROFILING
We define multidimensional profiling the activity to reason

about a software execution by varying multiple variables re-
lated to its execution. Typical variables are benchmarks and
software versions. Our objective is to gain a better under-
standing of a software execution by relating different profiles
obtained from slightly different conditions. Opportunities
for optimization and ways to minimize resource consumption
are then easier to find.

The rational behind multidimensional profiling is that if a
software execution is particularly fast or slow for an identified
situation (i.e., particular values for the variables), then the
situation can be exploited to improve the overall execution.

In a nutshell.
The ingredients to accurately exercise multidimensional

profiling are:

• Define the variation points of the executing environment.
Variation points are defined with a set of variables
(V1, ..., Vn). Each of these variables is associated to a
particular aspect of the execution environment, such as
software version, benchmark, parameters of a particular
methods, instances of a particular class.

• Specify the variation of the executing environment. Each
variable may either be set to a fixed value, or may iter-
ate over a range of values. Each iteration produces a
new profile. To better measure the impact of a variable
evolution, it is preferable to have all but one vari-
able fixed. These executions result in a set of profiles
P1, ...Pm.

• Having stable profiles. Each execution has to be repeat-
able and isolated from other executions. This means
that two profiles Pj and P ′

j produced by two identical
executions have to be “close enough” to be meaningful.

• Presenting the results. Data must be presented for
analyze to emphasize the variation of performance. The

evolution of Vi has to be unambiguously represented
to be able to draw a conclusion about the performance
evolution.

Implementation.
We have prototyped Rizel, a multidimensional profiler.

Rizel is implemented for the Pharo Smalltalk language. The
set of variables that Rizel currently consider are benchmarks
and software versions. This means that for a given software,
Rizel can:

• run a particular benchmark b for each of the software
versions s1, ..., sk

• run different benchmark b1, ..., bl for a particular soft-
ware version s

Our profiler measures the number of messages sent by each
method. It has been shown [3] that counting messages has
many advantages over estimating the execution time. For
example, counting messages is significantly more stable than
directly measuring the time: profiling twice a same execution
result in two very close profiles. Counting messages produce
stable profiles.

Case study.
We have measured the performance of Mondrian for 6

benchmarks over 11 representative versions. The left-most
diagram shows the evolution of the benchmarks against the
versions of Mondrian. We see that each benchmark indicates
a progressive degradation of the performance of Mondrian.
Each of these benchmarks corresponds to a particular feature.
Each feature is getting slower, not at the same pace however
(e.g., Benchmarks 3-6 are consuming much more time after
Version 2.93. Execution time of Benchmark 1 increases after
Version 2.65.)

We detail the evolution of Benchmarks 6 and 1 on the
right hand side of Figure 1. Both histograms describes an
increase of the execution time, which represents a gradual
degradation of Mondrian performance.

In our situation, isolating each feature and measuring its
performance evolution is key to have a clear understanding
of Mondrian performance.

3. RELATED WORK

2

Comparing program elements between two versions of
a program is essential in many areas, including regression
testing and software version merging. There are a number of
techniques that compare two program versions statically [4,
2]. There are also several techniques for dynamic analysis,
specifically using calling context trees (CCT) [6, 1, 5].

Zhuang et al. [6] propose a framework for analyzing per-
formance across multiple runs of a program, possibly in a
dramatically different execution environment. Their frame-
work is based on lightweight instrumentation technique for
building a calling context tree (CCT) of methods at runtime.
Adamoli et al. present Trevis, an extensible framework for
visualizing, comparing, clustering, and intersecting CCTs [1].
On the other hand, our approach compares multiple profiles
obtained even from slightly different conditions, counting
messages to estimate the execution time and compare the
profiles.

Mostafa and Krints [5] present PARCS, an offline analysis
tool that automatically identifies differences between the
execution behavior of two revisions of an application. PARCS
collects program behavior and performance characteristics
via profiling and generation of calling context trees.

In our case multidimensional profiling helps to determine
which versions and in which execution context should be
executed to reproduce the performance failure. It finally
compares the executions to detect the possible cause of a
drop performance.

4. CONCLUSION & FUTURE WORK
Multidimensional profiling is an innovative approach to

measure software performance: crystalizing the performance
of each software feature into a set of dedicated benchmarks
makes it possible to precisely monitor the global performance
of a software against different versions.

As a future work, in addition to the execution time we
plan to extract additional metrics such as the distribution of
the CPU time consumption over classes and methods. We
will then affine our analysis by drilling down to the cause of
a slowdown by identifying the method revision responsible
of a slower performance.

We will then concentrate on identifying pattern to describe
the evolution of feature performance across multiple software
versions. As far as we are aware of, all these points have
not been considered by the research community on software
performance.

5. REFERENCES
[1] Andrea Adamoli and Matthias Hauswirth. Trevis: a context

tree visualization & analysis framework and its use for
classifying performance failure reports. In Proceedings of the
5th international symposium on Software visualization,
SOFTVIS ’10, pages 73–82, New York, NY, USA, 2010. ACM.

[2] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean
Harrold. A differencing algorithm for object-oriented
programs. In Proceedings of the 19th IEEE international
conference on Automated software engineering, ASE ’04,
pages 2–13, Washington, DC, USA, 2004. IEEE Computer
Society.

[3] Alexandre Bergel. Counting messages as a proxy for average
execution time in pharo. In Proceedings of the 25th European
Conference on Object-Oriented Programming (ECOOP’11),
LNCS, pages 533–557. Springer-Verlag, July 2011.

[4] Daniel Jackson and David A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In Proceedings of

the International Conference on Software Maintenance,
ICSM ’94, pages 243–252, Washington, DC, USA, 1994. IEEE
Computer Society.

[5] Nagy Mostafa and Chandra Krintz. Tracking performance
across software revisions. In Proceedings of the 7th
International Conference on Principles and Practice of
Programming in Java, PPPJ ’09, pages 162–171, New York,
NY, USA, 2009. ACM.

[6] Xiaotong Zhuang, Suhyun Kim, Mauri io Serrano, and
Jong-Deok Choi. Perfdiff: a framework for performance
difference analysis in a virtual machine environment. In
Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, CGO ’08,
pages 4–13, New York, NY, USA, 2008. ACM.

3

	Profiling evolution
	Multidimensional Profiling
	Related Work
	Conclusion & Future Work
	References

