
Test Coverage With Hapao

Vanessa Peña Araya, Alexandre Bergel

Department of Computer Science (DCC)
University of Chile, Santiago, Chile

This paper uses colored figures. Though colors are not
mandatory for full understanding, we recommend a colored
printout.

ABSTRACT
Testing is an essential activity when developing software. It
is widely acknowledged that a test coverage above 70% is
associated with a decrease in reported failures. Coverage
tools output after running the unit tests the list of classes and
methods that are not executed. Simply tagging a software
element as covered may convey an incorrect sense of necessity:
executing a long and complex method just once is potentially
enough to be 100% test-covered. As a result, a developer
may have an incorrect judgement on where to focus testing
effort.

We present test blueprint, a visual tool to help practitioners
assess and increase test coverage by graphically relating
execution and complexity metrics.

1. TEST COVERAGE
Any respectable software engineering book will argue that

testing is an essential and central activity that has to be
continuously exercised when producing software. Numerous
frameworks are available for that purpose, including xUnit
and TestTypes1, just to name a few.

A kind of quality assurance comes from testing and the
use of metrics gives a quantitative measure of quality. Test
coverage, one popular metric, is concerned with determin-
ing what proportion of a defined piece of computer code is
executed during a testing cycle. Test coverage is commonly
reported as the proportion of packages, classes, methods and
lines of code that are executed by the tests. A software that
is well tested is commonly associated with a test coverage of
70%-80% [1].

1From Microsoft: http://bit.ly/f2zzEl

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The criteria that are commonly used are statement cov-
erage, branch coverage, and path coverage [2]. Identifying
uncovered statements, branches and paths indicate where
the test effort has to focus on next.

A surprising fact from common test coverage criteria is
that all the software elements considered when assessing a test
coverage have the same relevance. A method, a statement
or a branch is simply labelled as covered or not, and thus,
independently if these syntactic elements are complex or not,
dependent on other elements, or if they are exercised in many
different situations. As a consequence, statement, branch
and path coverage say that executing a method only once is
enough to label it as 100%-covered. This is clearly inadequate
in case of a complex or important method because indicating
a full coverage gives the wrong signal to the developer. This
paper is about fixing this situation by proposing an effective
visual representation.

The intuition explored in this paper is that if a “complex
and useful” piece of software is tested in many “different
situations”, then it is probably well tested. On the contrary,
if a “complex code” is executed “too few times”, then it is
probably under tested. This takes on a fairly different stance
from classical code coverage tools since we are not interested
only on whether each instruction and branch of the code has
been executed, but whether or not it has been sufficiently
executed in different situations. We have identified five
patterns to efficiently drive a test coverage assessment and
increase effort.

Most approaches to testing use branch coverage to decide
on the quality of a program test suite [2]. Test Blueprint takes
a different stance by favoring visual patterns over coverage
formal model.

Test blueprint is a polymetric view [?, ?] has been imple-
mented in Hapao2, a test code coverage for Pharo. Pharo3

is an emerging object-oriented programming language that
is very similar to Smalltalk, syntactically simple, and has a
minimal core. We have used Test Blueprint to increase the
coverage of a number of applications; the following illustrates
our points on two case studies.

2. TEST BLUEPRINT
Test Blueprint is a visual aid for practitioners to assess

and increase the test coverage of their applications. Before
showing Test Blueprint on a real world example, we first
introduce the visualization on a small but representative
example, given in Figure 1.

2http://hapao.dcc.uchile.cl
3http://www.pharo-project.org

1

http://bit.ly/f2zzEl
http://hapao.dcc.uchile.cl
http://www.pharo-project.org

ba

cd

calling methods

complexity # executions

Legend for methods (inner boxes)

red = not executed
blue = abstract
green = test method

invocation on self

f

C1

C2

e
class

Figure 1: Test blueprint description.

Large boxes represents classes (C1, C2 and T). Inheritance is
indicated with a connecting line between classes. Subclasses
are below their superclass. C1 is the superclass of C2. The
superclass of C1 is not part of the analysis.

Inner boxes represent methods. C1 defines five methods,
a, b, c, d and e. C2 defines one method, f. Each method
is represented as a small box, visually defined along fives
dimensions:

• height is the cyclomatic complexity of the method.
As the method may take different paths at execution
time, the higher the box will be (e.g., Method b). The
minimal visual representation of a method is a 5 x 5
square. A method with an empty body is therefore
represented as such.

• width is the number of different methods that call the
method when running the tests. A wide method (f)
means the method has been executed by many different
methods. A thin method (a, b, c) means the method
has been executed zero or few times.

• gray intensity reflects the number of times the method
has been executed. A dark method (d, f) has been
executed many times. A light-toned method (c) has
been executed a few times.

• a red border color (light gray on a B&W printout)
means the method has not been tested (i.e., executed
by the tests) (a, b). A blue border indicates abstract
methods. A green border indicates that the method is
a test method, defined in a unit test. Note that a unit
test may contain methods that are not test methods;
utility methods for example.

• the call-flow on the self variable is indicated with
edges between methods. This happens if the body of
a contains the expression self d, meaning that the
message d is sent to self. The methods a calls d on
self. The method b calls d and c on self. Note that
we are focusing on the call-flow instead of the control-
flow. The call-flow is scoped to the class. Call-flow is
statically determined from the abstract syntax tree of
the method. Calling methods are located above the
called methods (e.g., a is above d).

Each choice made for the design of test blueprint is justified
in the following sections.

2.1 Coverage evolution
We have undertaken a major effort to increase the coverage

of the Moose test suite4.
Figure 2 shows the evolution between the version 13 of the

core test suite, before we started our coverage increase, and
the version 48 of the test suite, after our effort. Version 13
comprises 15 unit tests and 176 test methods, which covered
63.54% of the package Moose-Core. Version 48 of the test
suite raises the figures to 23 unit tests, 252 test methods,
totaling a coverage of 86.07%.

The MooseElement class hierarchy has evolved during our
effort. Producing new unit tests offers the opportunity to
reconsider the relevance of each uncovered method: meaning-
less and obsolete code is removed. We started our effort with
the version 313 of the package Moose-Core. This package
comprises of 27 classes and 467 methods. The version 326 is
cleaner, which comprises of 26 classes and 440 methods.

2.2 Complexity reduction
The internal representation of a class offered by Test

Blueprint is effective at guiding a complexity reduction effort.
Figure 3 shows the evolution of a central class in the

MetacelloBrowser application5. While we were increasing
the coverage of the application, we exercised a number of
code refactorings and dead code removal. Version 1.58.1 on
the left-hand side contains 69 methods, where only 28 are
covered (painted in gray), representing a coverage of 40.57%.
This version contains a very tall uncovered method. This
method is much more complex than others because of its size
(it has a cyclomatic complexity of 15 whereas other methods
have a complexity ranging from 2 to 7).

Version 1.58.9 on the right-hand side contains 66 methods,
where 40 are covered, bringing the coverage to 60.60%. The
complex method has been cut down into pieces, shorter in
length and easier to test.

3. HAPAO
Test blueprint is implemented in Hapao, a test code cover-

age tool implemented in the Pharo programming language.
Hapao is designed to consider each of the requirements given
above.

Figure 4 is a screenshot of Hapao. The window title shows
the version of the application being visualized. The tool
bar contains a number of options for exporting; zooming;
running the tests; getting statistics; opening a new window
on the same software; getting help. Right-clicking on a class
opens a menu with navigations options.

4. REFERENCES
[1] Audris Mockus, Nachiappan Nagappan, and Trung T.

Dinh-Trong. Test coverage and post-verification defects:
A multiple case study. In Proceedings of ESEM’09,
IEEE.

[2] Hong Zhu, Patrick A. V. Hall, and John H. R. May.
Software unit test coverage and adequacy. ACM Comput.
Surv., 29(4):366–427, 1997.

4http://www.moosetechnology.org
5http://www.squeaksource.com/MetacelloBrowser.html

2

http://www.moosetechnology.org
http://www.squeaksource.com/MetacelloBrowser.html

Moose-Test-Core.13
Moose-Core.313

Moose-Test-Core.48
Moose-Core.326

21.42%

56.86%

73.58%

68.25%

0%

36.78%

100%

96.66%

64.55%

100%

100%

100%

Figure 2: Evolution of the MooseElement class hierarchy.

Version 1.58.1
Coverage: 40.57%

Version 1.58.9
Coverage: 60.60%

Figure 3: Complexity reduction in MetacelloBrowser.

3

Figure 4: Hapao main window.

4

	Test Coverage
	Test Blueprint
	Coverage evolution
	Complexity reduction

	Hapao
	References

