
Identifying cycle causes with Enriched Dependency Structural Matrix

Jannik Laval1, Simon Denier1, Stéphane Ducasse1, Alexandre Bergel2
1RMoD Team, INRIA - Lille Nord Europe
USTL - CNRS UMR 8022, Lille, France

2 Computer science department (DCC), University of Chile, Santiago, Chile
{jannik.laval, simon.denier, stephane.ducasse, alexandre.bergel}@inria.fr

Note for the reader: this paper makes heavy use of colors in
the figures. Please obtain and read an online (colored) version of
this paper to better understand the ideas presented in this paper.

Abstract

Dependency Structure Matrix (DSM) has been success-
fully applied to identify software dependencies among pack-
ages and subsystems. A number of algorithms were pro-
posed to compute the matrix so that it highlights patterns
and problematic dependencies between subsystems. How-
ever, existing DSM implementations often miss important
information to fully support reengineering effort. For ex-
ample, they do not clearly qualify and quantify problematic
relationships, information which is crucial to support reme-
diation tasks.

In this paper we present enriched DSM (eDSM). eDSM
cells are enriched with contextual information about (i) the
type of dependencies (e.g., inheritance, class access), (ii)
the proportion of referencing entities, (iii) the proportion
of referenced entities. We distinguish independent cycles
and stress potentially simple fixes for cycles using color-
ing information. This work has been implemented on top
of the Moose reengineering environment and the Mondrian
visualization framework. It has been applied to a non-
trivial case study, the Morphic UI framework available in
two open-source Smalltalks, Squeak and Pharo. Problems
identified by eDSM have been performed and retrofitted in
Pharo main distribution.

1 Introduction

Understanding the package organization of an applica-
tion is a challenging and critical task since it reflects the
application structure. Many approaches have flourished to
provide information on packages and their relationships, by
visualizing software artefacts, metrics, their structure and
their evolution. Distribution Map [4] shows how proper-
ties are spread over an application. Lanza et al. [6] pro-

pose to recover high-level views by visualizing relation-
ships. Package Surface Blueprint reveals the package in-
ternal structure and relationships among other packages –
surface represents relations between the analyzed package
and its provider packages. Dong and Godfrey [3] propose
high-level object dependency graphs to represent and un-
derstand the system package structure.

Dependency Structure Matrix (DSM) is a well-know
technique to identify cycles [14]. Originally it has been de-
veloped for process optimization to identify dependencies
between tasks. This method has been applied with success
to identify software component dependencies [15, 16, 12].
MacCormack and al. [13] have applied DSM to analyze
modularity of the architecture of Mozilla and Linux.

While DSM is a robust solution to reveal software struc-
ture, DSMs have weaknesses too. DSM current implemen-
tations allow one to perform high-level inventory of a situ-
ation, but they are limited for fine-grained understanding—
tools just offer drop-down lists to show classes and methods
creating dependencies between packages.

For example, current DSM implementations do not pro-
vide detailed information about interpackage dependencies.
Cycles, which constitute a special target for dependency
resolution, are commonly identified using the adjacency
matrix power method [20]. Unfortunately, this algorithm
inaccurately identifies cycles since independent cycles are
merged. Another limit is that DSM current implementa-
tions do not take class extensions1 into account, which are
used in a number of languages including Objective-C, Ruby,
Smalltalk, C# 3.0.

Our contribution is two-fold: first, we identify weak-
nesses of current DSM (Section 2); second, we address
these weaknesses (Section 3). We propose a DSM with en-
riched cells2. eDSM cells contain contextual information
which shows (i) the nature of dependencies (inheritance,
class access, invocation, and class extension), (ii) the en-

1A class extension is one or more methods defined in a package on a
class living in a different package.

2a DSM cell represents the intersection of two packages

A B C D
A X
B X
C X X
D X

A B

C D

Figure 1. A simple DSM.

tities performing references, (iii) the entities being refer-
enced. We distinguish independent cycles and differentiate
cycles using colors. We applied eDSM on a large system,
Morphic UI framework and the results of the analysis were
integrated in Pharo3, a new version of Squeak.

The paper is organized as follows: Section 2 introduces
DSM and its limitations in existing implementations. Sec-
tions 3 and 4 present eDSM specifications and its usage,
from overview of an application to detailed view of in-
terpackage dependencies. Section 5 shows an experiment
on Morphic UI and identifies some patterns and solutions
found in the study. Section 6 discusses limitations of our
solution and future work. Section 7 concludes.

2 Limitations of DSM

DSMs are effective for detecting cycles between soft-
ware components. The use of DSMs gives pertinent results
for the verification of the independence of software compo-
nents [14]. However, in their current form, DSMs must be
coupled with other tools to offer fine-grained information.

Figure 1 shows a sample dependency graph and its cor-
responding binary DSM. A binary DSM shows the exis-
tence/lack of a dependency (or reference) by a mark or
“1/0”. The rule for reading the matrix is: element in col-
umn header references element in row header if there is a
mark. In our context, A, B, C, and D are packages. The
element in column header is also called the source and the
one in row header the target. In Figure 1, A references B
and C, B references A, C references D and D references C.

We applied DSM on a couple large case studies and we
identified a number of limitations with current DSM imple-
mentations: inaccurate merging of independent cycles by
the adjacency matrix power method (Section 2.1), lack of
fine grained-overview (Section 2.2) and lack of support for
class extensions (Section 2.3).

2.1 Problem with the adjacency matrix
power method

A simple way to identify cycles in DSM is to use the
adjacency matrix power method. The principle of this ap-

3http://www.pharo-project.org

A B C D
A 0 1 0 0
B 1 0 0 0
C 1 0 0 1
D 0 0 1 0

(a) Binary matrix

A B C D
A 1 0 0 0
B 0 1 0 0
C 1 0 1 0
D 1 0 0 1

(b) Binary matrix
raised to square

A B C D
A X
B X
C X X
D X

(c) Partitioned
DSM by the
adjacency matrix
power method

A B C D
A X
B X
C X X
D X

(d) Ideal par-
titioned DSM:
Independent cycles
distinction

Figure 2. Limitation of the adjacency matrix
power method. Cycles are shown in gray.

proach is to raise the binary DSM to its nth power to find
elements which link back to themselves in n edges, thus
making a cycle [20]. A non-zero mark in the diagonal of
the power matrix points to elements involved in a cycle of
length n.

Figure 1 shows two distinct direct cycles: one between
A and B and one between C and D. Figure 2(a) shows the
binary matrix of the DSM and Figure 2(b) shows the ma-
trix raised to the square. The diagonal of 1 indicates that all
elements are involved in one or more direct cycles. How-
ever, the adjacency matrix power does not separately iden-
tify these different cycles, resulting in a single and inaccu-
rate merged cycle. Figure 2(c) shows the partitioned matrix
with a unique wrong cycle—a single gray zone representing
the cycle. On the contrary, Figure 2(d) shows a correctly
partitioned matrix with two distinct cycles.

The adjacency matrix power method produces inaccu-
rate results when used to identify independent cycles be-
cause it computes the number of edges to come back to an
element without considering the cycling path [8]. Instead,
path searching algorithms have also been used to detect cy-
cles in DSM and should be systematically preferred when
the problem of identifying independent cycles is important.

2.2 Lack of fine-grained information

A traditional DSM offers a general overview but does not
display details about the situation it describes. We identify
two weaknesses: lack of information on dependency causes
and lack of information on dependency distribution.

A B C D
A X
B X
C X
D

(a) DSM with
marks

A B C D
A 5
B 3
C 1
D

(b) DSM with
numbers

Figure 3. Examples of references in a DSM.

Dependency causes. Fixing a cycle often means chang-
ing some dependencies involved in the cycle. However, the
cost of fixing a cycle may vary with the cause of dependency
e.g., changing a direct reference to a class is often easier
than changing an inheritance relationship. Dependencies
are of different natures (direct class access, method invoca-
tion, inheritance relationship, and class extension) and a bi-
nary matrix (Figure 3(a)) or a matrix providing the number
of dependencies in each cell (Figure 3(b)) do not provide
such information.

Annotating a DSM with the types of dependencies can
give more fine-grained information and it supports a better
understanding of the situation. However, a challenge with
this solution is that the matrix should remain readable and
should not be overloaded.

Dependency distribution. Knowing that a package has
78 references to another one (package Morphic-Widgets on
Morphic-Basic in Figure 9) is a valuable but insufficient in-
formation. Such references could be done by a large num-
ber of classes or few classes and these 78 references could
refer to a small number or a large number of classes. This
additional information is important since it allows one to
quantify the effort to fix a cycle. The intuition is that it is
easier to target few classes with some dependencies rather
than a lot of classes with few dependencies. For example in
Figure 9, 16 classes and 41 methods of package Morphic-
Widgets reference 10 classes and 42 methods of package
Morphic-Basic, while only two classes and three meth-
ods of Morphic-Basic reference one class and no method
of Morphic-Widgets. Consequently, it should be faster to
target the dependencies from Morphic-Basic to Morphic-
Widgets rather than the ones in the opposite direction.

2.3 Class extensions not supported

A class extension is a method defined in a package,
for which the class is defined in a different package [1].
Class extensions exist in Smalltalk, CLOS, Ruby, Python,
Objective-C and now in C#. They offer a convenient way
to incrementally modify existing classes when subclassing
is inappropriate (Figure 4). AspectJ inter-type declarations
offer a similar mechanism.

Core

asUrl
String

Network

Url

^ Url new
 path: self

(a) Dependency without class extension (Core de-
pends on Network)

Core

String

Network

Url

String
asUrl

^ Url new
 path: self

(b) Reversed dependency with class extension (Net-
work depends on Core)

Figure 4. Principle of class extension.

Note that extending by subclassing may be inappropriate
when one can not modify the source code or client classes
to make it refer to a new subclass. In addition class ex-
tensions are really powerful to layer applications because
they allow one to revert package dependencies. In Figure 4,
instead of creating a method in the package Core which cre-
ates a dependency between the packages Core and Network,
we extend the class String in the package Network with the
method asUrl. Consequently, the dependency between the
two packages is reversed.

Thus, it is important that the tools supporting DSM con-
struction correctly identify the direction of dependencies
such as class extensions.

3 Enriched DSM (eDSM)

To address the problems previously mentioned, we en-
hance DSM with functionalities that are not present in the
Lattix DSM implementation [14]. Our solution (i) isolates
independent cycles using colors (Section 3.1), (ii) enriches
contextual cell information (Section 3.2) and (iii) supports
class extensions (Section 3.2).

In particular, enriched cells act as small multiples [18]
where similar looking side by side little visualizations pro-
vide a differentiating effect (see Figure 7). An important de-
sign feature is the use of color to focus on packages where
it is easier to resolve a cyclic dependency. Therefore we
use brighter colors for places having fewer dependencies.
The tool is implemented on top of the Moose open-source
reengineering environment and the Mondrian visualization
framework. Since it is based on the FAMIX meta-model

G

1

F

12G
4F

E

E

A B C D
A 5
B 3
C 25
D 2

Direct cycle

Indirect cycle

Direct cycle with
a large difference
between number

of references

Cyan color frames
an indirect cycle

Figure 5. Cell color definition.

[2], our eDSM works for mainstream object-oriented pro-
gramming languages [5].

3.1 Enhanced cycle detection

Our approach enhances the traditional matrix by provid-
ing a number of enhancements: cycle distinctions, indirect
cycle identification, and hints for fixing cycles.

Cycle distinctions. eDSM distinguishes independent cy-
cles using a path searching algorithm [8]. With this method,
two independent cycles are detected separately and remain
isolated from each other in the DSM (Figure 2(d)).

Indirect cycles. We use color in DSM cells to identify
cycles. Indeed, as shown in Figure 5, DSM cells involved in
a cycle have a yellow or red color. The red color means that
the two concerned packages reference each other and thus
create a direct cycle. Two packages in a direct cycle have
two red cells symmetric against the diagonal. The yellow
color means that the dependencies from one package to the
other participate in an indirect cycle (a cycle with more than
two elements). The pale blue background color frames all
cells involved in an indirect cycle (visible in Figure 7). Its
area visual indicates the number of packages in the cycle.
On the contrary, rows and columns with white or gray colors
indicate packages not involved in a cycle. The diagonal of
the matrix, where a package may reference itself, is colored
in gray to highlight the symmetry axis but is not used so far
in the current version of our work.

Color hint for targeting cycle. We define a special rule
to highlight cells of primary focus when resolving cyclic
dependencies. The intuition is that it will be easier to fix
a cycle by focusing on the side with fewer dependencies.
A cell with much fewer dependencies is displayed with a
bright red color whereas its symmetric cell is displayed with
a light red/pink color (Figure 5). The ratio we currently use
is 1 to 3. This rule only applies to direct cycles as it is eas-
ier to compare two packages side by side than an arbitrary
number of packages involved in an indirect cycle.

Figure 5 illustrates the rules for cycle colors in cells. It
shows two direct cycles with the red color, one between A
and B and one between C and D. These cycles are distinct
since there is no red box on rows A and B coming from
columns C and D. The bright red color in the C-D enables
one to quickly focus on the dependencies from C to D, since
there are only two of them instead of 25 in the opposite di-
rection. Finally, E, F, and G are involved in the same indi-
rect cycle highlighted by the yellow and pale blue cells. The
cycle color is in fact one among other information displayed
in a cell, as we explain in the following section.

3.2 Enriched contextual cell information

eDSM enriches cell contents to give a detailed overview
of dependencies from a source package to a target package.
Thus each cell is the intersection between a source and a
target. The objective is to create small multiples [18] as
shown in Figure 7.

Overall structure of an enriched cell. An enriched cell
is composed of four parts (Figure 6). The top row gives
an overview of the strength and nature of the dependencies.
The bottom row presents cycle information as explained in
the previous subsection. The two large boxes in the mid-
dle detail dependencies going from the top box to the bot-
tom box i.e., from the source package to the target package.
Each box contains squares that represent involved classes:
referencing classes in the source package and referenced
classes in the target package. Edges between squares link
each source class to its target classes.

Dependency overview. An enriched cell first shows an
overview of the strength, nature, and distribution of the de-
pendencies from a source package to the target package.

• Dependency strength and nature (top row). The top
row gives a simple summary of the number and na-
ture of dependencies to get an idea of their strength.
We show the total number of dependencies (Tot), in-
heritance dependencies (Inh), direct accesses to classes
(Acc), invocations (Msg), and method extensions (Ext)
made by the source package to the target one. In
Figure 9 there are 78 directed dependencies from
Morphic-Widgets to Morphic-Basic.

• Dependency distribution (left bars). For each pack-
age, we are interested in the ratio of classes involved
in dependencies with the other package. We map the
height of the left bar of each package box to the per-
centage of classes involved in the package. The bar
color is also mapped to this percentage in order to re-
inforce its impact (from green for low values to red for

100% involvement). A package showing a red bar is
fully involved with the other package, which makes it
a candidate for merging both packages in some cases.

Source package

Target package

Ratio of concerned
classes

in each package

Background color: cycle

Thick border:
class with
dependencies in
both directions

Thin border: class
with dependencies
in a unique direction

Tot Inh Acc Msg Ext

Green fill: no
dependency to other
packages Red fill:

dependencies in
both directions with
other packages

P3

P4

Orange fill:
dependencies
from or to other
packages

Dependency
number and nature

C

Z X Y

BA D'

D

Colored link based on:
- Red: accesses
- Blue: inheritance
- Green: invocations
- Black: class extensions
- Orange: accesses+invocations
- Gray: inheritance+others

P2

YX Z D

P1

B A C D'

Dotted border: class
Extension

Figure 6. Enriched cell structural information.

Colored information. Enriched cells make use of colors
to convey more information about the context in which de-
pendencies occur. Our goal is to use preattentive visualiza-
tion4 as much as possible to help spotting important infor-
mation [17, 9, 10, 19]. An enriched cell is composed of
parts and shapes with different color schemas.

Cycle color (bottom row). The bottom row represents
cycle information using color as explained in Section 3.1.
The red/pink indicates a direct cycle between the two pack-
ages, yellow and cyan an indirect cycle, and gray an uni-
directional access from the source package to the target
package—which means that there is no cycle.

Class color (middle boxes). Each square represents a
class and displays two types of information using its fill
color as well as its border (Figure 6).

• Color fill. A class may be in dependency with other
packages than the two represented by the cell, such
as classes B or C in Figure 6. The color fill uses the

4Researchers in psychology and vision have discovered a number of
visual properties that are preattentively processed [9]. They are detected
immediately by the visual system: viewers do not have to focus their at-
tention on a specific region in an image to determine whether elements
with the given property are present or absent. An example of a preatten-
tive task is detecting a filled circle in a group of empty circles. Commonly
used preattentive features include hue, curvature, size, intensity, orienta-
tion, length, motion, and depth of field. However, combining them can
destroy their preattentive ability (in a context of filled squares and empty
circles, a filled circle is usually not detected preattentively).

metaphor of the traffic lights (green, orange, red) to
qualify the relationships the class has with packages
other than the two concerned. A class which has no
dependency with external packages other than the con-
cerned packages is displayed as green. A class which
has dependencies in only one direction (i.e., either
incoming dependencies or outgoing dependencies) is
displayed as orange. A class which has dependencies
in both directions is displayed as red. A class which
only has internal dependencies is never displayed in
a DSM. Thus, moving a green class between the two
concerned packages does not have any impact on their
external dependencies, whereas moving a red class can
change their respective external dependencies.

• Border color and thickness. The square border thick-
ness also conveys information: a black thick border
means that the class has a bidirectional dependency
with the other package: it both uses and is used by
classes in the other package of the cell (not necessar-
ily the same classes). In Figure 6, class A has a thick
border because it is referred by class X of the target
package and because it refers to class Z.

A gray thin border means that the class has a unidi-
rectional dependency with the other package i.e., it ei-
ther uses or is used by classes in the other package. In
Figure 6, class B (resp. Z) has a thin border because
it refers to X but is not referred in the target package
(resp. is referred by A but does not refer to source
package).

Edge color. Edges are the smallest details displayed by
the eDSM. They give information on the nature and spread
of dependencies between the classes in the cell (Figure 6).
There are four basic natures, each one mapped to a primary
color: access in red, inheritance in blue, invocation in green
and class extension in black. When dependencies between
two classes are of different natures, colors are mixed as fol-
lows: orange is used for a dependency with both accesses
and invocations, and gray is used for any dependency in-
volving inheritance with accesses and/or invocations. In-
deed, an inheritance dependency mixed with other depen-
dencies can be quite complex and we choose not to focus
on such combination.

Representation of class extension. Class extension rep-
resents a method which is in another package than its class
(Section 2.3). In a cell, a class extension is represented by
a square with dotted border and the same color informa-
tion than the original class. This convention exists because
a class extension is not a class. The situation in Figure 6
shows all possible colors.

D: two classes referring
each other
F: candidate for direct
cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target
impacted

G: invocations

H: inheritance
+ otherC: accesses

F: candidate for
direct cycle

fix

B: complex cycle
B: complex cycle

C: accesses

E: high % of source

I: outgoing funnel

Figure 7. An overview of a Morphic subset: Enriched cells in DSM provide a small multiple effect.

4 From overview to detailed views

Cells have been especially designed so that they work as
small multiples [18] i.e., that variations of the same struc-
ture reveal information. We applied eDSM to the Morphic
framework of Squeak. Morphic is composed of 46 pack-
ages and 325 classes. It was never packaged in a modular
way, hence showing a lot of cyclic dependencies. We use
this case study to show eDSM in practice as well as in the
following sections.

4.1 Small multiples at work

Figure 7 shows a large indirect cycle delimited by the
pale blue area. At first glance, the bright red cells are good
starting points for investigation of simple cyclic dependen-
cies to break.

The first use of the eDSM is to get a system overview
(Figure 7) to scan packages not involved in cycles (not

shown in Figure 7) and how they interact with other pack-
ages. Subsequently, we spot packages involved in direct
and indirect cycles: a pale blue area delimits cells in cy-
cling packages. In Figure 7 we can spot:

A packages in indirect cycles (yellow bottom bar).

B packages communicating heavily.

C packages containing classes with a lot of accesses to
other classes.

D packages where only two classes are referring to each
other.

E packages having a large percentage of classes involved
in the dependency (left bar).

F packages with direct cycles which seems easier to fix
(low ratio of references - red bottom bar).

G packages containing classes performing a lot of invoca-
tions to other classes.

H packages containing classes performing inheritances and
invocations to other classes.

I packages in which a lot of classes refer to one class (in-
coming funnel).

J packages in which a lot of classes are referred by one
class (outgoing funnel).

Browsing the overview and accessing more detailed
views is supported by direct interaction with the mouse.
These views can be for example class blueprint or any poly-
metric views [11].

4.2 Interaction and detailed view

Fly-by help. More precise information about the
dependencies is given using fly-by help on the cell
and its elements. This information includes the full
name of concerned packages, the name of classes and
the name of each concerned method. Figure 8 shows
the pop-up information of the cell linking Morphic-
Basic to Morphic-Widget: there are three accesses
to class HandleMorph from the methods Polygon-
Morph.customizeArrows:, TextMorph.setCurveBaseline:,
and TextMorph.changeMargins:.

Figure 8. Fine-grained information in a cell.

Zooming on two packages. Each cell in a DSM repre-
sents a single direction of dependency. To get the full pic-
ture of a direct cycle, we compare two cells, one for each
direction. Despite the symmetry intrinsic to a DSM, it is
not always easy to focus on the two concerned cells. We
provide a zoom which pops up a detailed view with the two
concerned cells, as shown in Figure 9. Thus, we focus on a
direct cycle which seems interesting from the overview, and
analyze the details with the zooming view.

Classes in Morphic-Widgets
use classes in Morphic-Basic

Classes in Morphic-Basic
use classes in Morphic-Widgets

Figure 9. Zoom on two packages in cycle.

4.3 Visual patterns

eDSM supports the understanding of the general struc-
ture of complex programs. Since it is based on the idea of
small multiples [18], the cell visual aspect generates visual
patterns. While performing our Morphic experiment, we
have detected some patterns stressing characteristic situa-
tions. We present three patterns.

One-hotspot cycle. A first pattern is a cycle created by
a single class in one package. In Figure 10, the class la-
belled Pa is the only one appearing in Morphic-Worlds and
both uses and is used by classes in Morphic-Kernel (as in-
dicated by its thick border). Actually, there is a single class
in Morphic-Kernel which links back to the Pa class.

eDSM stresses that one class is the center of the cycle.
We can focus on this class and its dependencies.

Twin-class cycle. The second pattern is a direct cycle be-
tween the same two classes. In Figure 11, only one class of
Morphic-Worlds is in cycle with only one class of Morphic-
Widgets. In addition, they both have a thick border so it is
clearly a direct cycle between these two classes.

This pattern is more specific than the previous one. We
focus our attention on just two classes of the two packages.

Funnelled cycle. The third pattern is a cycle with a fun-
nelled cycle. It is a cycle with a lot of classes which refer-
ence one class (Figure 12) or one class which references a
lot of classes (Figure 10).

This pattern shows the importance of a simple class in
other packages. It is certainly a complex or a central class.

Pa

Pa

Figure 10. A one-hotspot cycle.

Figure 11. A twin-class cycle.

Figure 12. A funnelled cycle.

5 Morphic experiment

We experimented and validated our approach with a non-
trivial case study. We refactored the Morphic framework

in the Pharo open-source Smalltalk. Morphic is a graphic
framework comprising 46 packages and 325 classes. It was
not designed in a modular fashion and has a 12 years long
history of evolution and extension, making it complex to
analyze by exhibiting a great deal of dependencies between
packages. It contains 45 direct cycles between 28 packages
in the studied version.

In this section, we first present a global analysis of Mor-
phic UI. Subsequently, we show how we proceed to analyze
the identified cycles and as well as the results we obtained
and validated by the maintainers of Pharo.

5.1 Morphic analysis

One goal of the Morphic refactoring is to reorganize
classes in simpler, conceptually cleaner packages to make
its maintenance easier. Cycles are then the primary target to
remove to obtain layers of packages.

We analyze each cycle found with eDSM and try to
quickly identify the opportunity to remove them. For each
direct cycle, we look for one simple solution or mark the
cycle as too complex to be easily fixed (the criterion is to
find a solution in five minutes). Solutions include: moving
a class between two packages, converting a method into a
class extension, removing a useless class or method, merg-
ing packages. The solutions found were sent as fix proposi-
tions to Pharo developers for review.

We make a classification of direct cycles according to the
perceived complexity. We consider that it is easier to break
a cycle when there are 10 dependencies on one class instead
of 10 classes with one dependency on each. Thus the clas-
sification is based on the number and type of dependencies.

• Monotype (Mn) cycle: it is a direct cycle where a cell
has only a single edge between two classes, represent-
ing either access, inheritance, or invocation. There are
21 of them in Morphic UI: all are direct class refer-
ences.

• Simple (S) cycle: it is a direct cycle where a cell has
only a single edge between two classes, representing
multiple types of dependencies (access and invocation
or inheritance and others). There are 12 of them in
Morphic UI.

• Direct cycle with two edges (2L). There are five of
them in Morphic UI.

• Complex direct cycles—with more than two edges
(CC). There are seven of them in Morphic UI.

5.2 Study of a cycle

The case study is based on Figure 9. It is a direct cy-
cle between Morphic-Widgets and Morphic-Basic (named

Cycle between packages:Cycle between packages: Type proposition

Worlds Extras-Flaps S merge packages

Worlds Extras-Books CC merge packages

Worlds Windows S delete method

Kernel Extras-Flaps S convert a method into a class

extension

Kernel Extras-Books 2L move class in another package

convert a method into a class

extension

Kernel Worlds Mn convert a method into a class

extension

Extras-SqueakPage Extras-Books S convert a method into a class

extension

OR merge packages

Extras-SqueakPage Worlds S convert a method into a class

extension

Extras-SqueakPage Kernel S convert a method into a class

extension

Widgets Worlds Mn convert a method into a class

extension

FileList Windows S merge packages

FileList Kernel 2L merge packages

Extras-

AdditionalWidgets

Kernel 2L move class in another package

Extras-

AdditionalWidgets

Widgets S move class in another package

Extras-Support Kernel Mn move class in another package

Extras-Demo Kernel Mn move class in another package

or delete class

Extras-Demo Menus Mn delete method

Extras-PartsBin Worlds Mn convert a method into a class

extension

Basic Widgets 2L convert a method into a class

extension

Basic Menus Mn convert a method into a class

extension

Basic Extras-Support Mn convert a method into a class

extension

Basic Extras-PartsBin Mn convert a method into a class

extension

Balloon Support Mn convert a method into a class

extension

Extras-

AdditionnalSupport

Kernel Mn move method in a subclass

Extras-

AdditionnalSupport

FileList Mn merge class

Extras-Postscript

Canvases

Kernel Mn convert a method into a class

extension

Figure 13. Results of Morphic analysis.

Widgets and Basic below).
We can see that the Widgets package has a lot of depen-

dencies to Basic (pink cell) while only two classes in Basic
use one class of Widgets (red cell). Moreover, there are only
red edges in the red cell, whereas in the pink cell they are of
multiple colors. At first glance, it is thus easier to investi-
gate the dependencies of the red cell, from Basic to Widgets.

Let us look at the red cell. There are two referencing
classes and one referenced class. All three are colored in
red, which means they use and are used in other packages.
Thus it would be difficult to move these classes without fur-
ther investigation.

Instead, we focus on the dependencies between
classes in the red cell, which are only class accesses.
The fly-by help (Figure 8) displays for each class

in the cell the concerned methods (methods in the
source package making class accesses in the target
package). There are three such methods: Polygon-
Morph.customizeArrows:, TextMorph.setCurveBaseline:,
TextMorph.changeMargins:. This provides entry points
in the source code to find precisely where the target class
HandleMorph is accessed.

It appears that each of these methods contains the
line HandleMorph new to create an instance of Handle-
Morph. A possible solution is to create class extensions
for TextMorph and PolygonMorph in the package Widgets
and to put the three referencing methods in it. Then the de-
pendencies would be reversed as explained in Section 2.3,
effectively breaking the cycle.

5.3 Results

We applied the previously described process on the 45
direct cycles identified in Morphic UI using eDSM. We pro-
posed 25 cycle resolutions presented in Figure 13. Among
the 20 cycles left, five cycles are judged visually too com-
plex (with many dependencies on each side) and immedi-
ately left out; 15 cycles require a deeper exploration of the
internals of Morphic UI, since we were not able to find a
solution in five minutes. We checked our 25 proposals with
one Pharo maintainer who commented, implemented or re-
jected our proposal. Among the 25 propositions, 18 have
been accepted and integrated in the current Pharo release.

6 Discussion

6.1 Limits

There are still some limitations which we would like to
overcome, with the objective to make eDSM more effective
for reengineers.

One limit is the lack of semantic information. This limit
is a common defect of visualizations based solely on struc-
tural information. For now, cell information is only about
class and method structure (inheritance, invocations). We
plan to annotate dependencies with semantic information to
improve the refactoring experience.

Our approach shows dependencies between packages.
Internal dependencies between classes of one package are
not displayed. To avoid overloading the eDSM overview,
we consider using a zooming view showing the internals of
the package.

When validating our proposals, the maintainer some-
times asked what was the impact of a merge or move be-
tween packages. He also asked to see other external refer-
ences to packages in the cell before taking a decision. Cur-
rently we can not show such valuable information. We plan
to use a specific visualization, such as Package Blueprint

[7], showing all dependencies from/to one single package
in a pop-up view.

Another problem is screen space limitation. A DSM uses
a lot of useless space when there are empty cells. An inter-
active filter on packages may be useful with respect to this.

Professional DSMs such as Lattix support layer speci-
fication and violation detection. This is orthogonal to our
work but definitively relevant to add to our approach.

6.2 Comparison with an oriented-graph

An oriented graph is generally used to show dependen-
cies including cycles. It is intuitive and has a fast learning
curve. One problem with oriented graph is finding a good
layout scaling well on large sets of nodes and edges: such a
layout needs to preserve the readability of nodes, the ease of
navigation following edges, and to minimize edge crossing.

With DSM the visualization structure is preserved what-
ever the data size is, which enables the user to dive fast into
the representation using the normal process. Cycles remain
clearly identified by colored cells. Moreover, eDSM en-
ables fine-grained information about dependencies between
packages. Classes in source package as well as in target
package can be shown in the cells of the DSM.

7 Conclusion

This paper enhances Dependency Structure Matrix
(DSM) using small multiple. First, colors are used to distin-
guish direct and indirect cycles. Second, cell contents are
enriched with the nature and strength of the dependencies
as well as with the classes involved. Such enhancements are
based on small multiples [18] and preattentive visualization
principles [17, 9, 10, 19]. Thanks to these improvements,
package organization and cycles are made explicit. We ap-
plied the eDSM on a complex system and systematically
checked and tried to fix the cycles. Out of 45 direct cycles,
we could propose 25 solutions to break the cycles. 18 got
accepted and implemented by the maintainers of the Pharo
open-source Smalltalk.

We believe this paper provides an appealing approach
for identifying cycles. The experiment we conducted gave
us the feeling that indirect cycles were more difficult to an-
alyze than direct ones. This makes our future work focuses
on getting better visualizations for indirect cycles. Cur-
rently, EDSM provides relevant indications for reengineers,
but it appears that a change forecast would greatly enhances
reengineering tasks.

References

[1] A. Bergel, S. Ducasse, and O. Nierstrasz. Analyzing mod-
ule diversity. Journal of Universal Computer Science,

11(10):1613–1644, Nov. 2005.
[2] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —

The FAMOOS Information Exchange Model. Technical re-
port, University of Bern, 2001.

[3] X. Dong and M. Godfrey. System-level usage dependency
analysis of object-oriented systems. In ICSM 2007: IEEE
International Conference on Software Maintenance, pages
375–384, Oct. 2007.

[4] S. Ducasse, T. Gı̂rba, and A. Kuhn. Distribution map. In
Proceedings of 22nd IEEE International Conference on Soft-
ware Maintenance (ICSM ’06), pages 203–212, Los Alami-
tos CA, 2006. IEEE Computer Society.

[5] S. Ducasse, T. Gı̂rba, A. Kuhn, and L. Renggli. Meta-
environment and executable meta-language using Smalltalk:
an experience report. Journal of Software and Systems Mod-
eling (SOSYM), 2008.

[6] S. Ducasse and M. Lanza. The class blueprint: Visually sup-
porting the understanding of classes. Transactions on Soft-
ware Engineering (TSE), 31(1):75–90, Jan. 2005.

[7] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui.
Package surface blueprints: Visually supporting the under-
standing of package relationships. In ICSM ’07: Proceedings
of the IEEE International Conference on Software Mainte-
nance, pages 94–103, 2007.

[8] D. Gebala, S. Eppinger, and M. Cambridge. Methods for an-
alyzing design procedures. Design Theory and Methodology,
1991.

[9] C. G. Healey. Visualization of multivariate data using preat-
tentive processing. Master’s thesis, Department of Computer
Science, University of Bristish Columbia, 1992.

[10] C. G. Healey, K. S. Booth, and E. J. T. Harnessing preatten-
tive processes for multivariate data visualization. In GI ’93:
Proceedings of Graphics Interface, 1993.

[11] M. Lanza and S. Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. Transactions on Soft-
ware Engineering (TSE), 29(9):782–795, Sept. 2003.

[12] A. Lopes and J. L. Fiadeiro. Context-awareness in software
architectures. In Proceeding of the 2nd European Workshop
on Software Architecture (EWSA), volume 3527 of Lecture
Notes in Computer Science, pages 146–161. Springer, 2005.

[13] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Explor-
ing the structure of complex software designs: An empirical
study of open source and proprietary code. Management Sci-
ence, 52(7):1015–1030, 2006.

[14] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using de-
pendency models to manage complex software architecture.
In Proceedings of OOPSLA’05, pages 167–176, 2005.

[15] D. Steward. The design structure matrix: A method for man-
aging the design of complex systems. IEEE Transactions on
Engineering Management, 28(3):71–74, 1981.

[16] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The
structure and value of modularity in software design. In
ESEC/FSE 2001, 2001.

[17] A. Treisman. Preattentive processing in vision. Computer
Vision, Graphics, and Image Processing, 31(2):156–177,
1985.

[18] E. R. Tufte. Visual Explanations. Graphics Press, 1997.
[19] C. Ware. Information Visualization. Morgan Kaufmann,

2000.
[20] A. Yassine, D. Falkenburg, and K. Chelst. Engineering de-

sign management: an information structure approach. In-
ternational Journal of Production Research, 37(13):2957–
2975, 1999.

