
Klotz: An Agile 3D Visualization Engine

Ricardo Jacas Alexandre Bergel
Pleiad Lab, Department of Computer Science (DCC),

University of Chile, Santiago, Chile
ricardo.jacas@gmail.com http://bergel.eu

ABSTRACT
Klotz is an agile 3D visualization engine. Visualizations
are produced from an arbitrary model described in terms of
objects and interconnections. Any arbitrary model may be
visualized. Klotz uses a semi-descriptive scripting language
to easily and interactively build visualizations.

Klotz, on its current version, offers four layouts to easily
exploit the third dimension when visualizing data.

Klotz is entirely implemented in Pharo. The engine is fully
based on the facilities offered by Morphic.

1. INTRODUCTION
Visual displays allow the human brain to study multiple

aspects of complex problems in parallel. Visualization, ”al-
lows for a higher level of abstract, a closer mapping to the
problem domain” [3].

Numerous frameworks have been offered by the Smalltalk
community to visualize data. Mondrian1 [1], one of them,
is a flexible and agile visualization engine that uses a two
dimensional representation to visualize data.

We are building on the experience we gained with Mondrian
by proposing a new visualization engine that adds a third
dimension to the graphical representation. Klotz applies the
main features of Mondrian, namely the scripting language
and the interactive easel, to a new rendering engine.

Contrary to other Smalltalk 3D visualization engines (Lu-
mière[2], Jun2), Klotz does not rely on OpenGL or any exter-
nal libraries. The generation of 3D graphics is solely based
on Morph facilities. The benefits are numerous, including
ease of installation and multi-platform support.

The paper is structured as follows: Section 2 presents the
essential characteristics of Klotz. It progressively presents
Klotz’ features by giving short and concise illustrative scripts.
Section 3 briefly describes the main points of Klotz imple-
mentation and gives some benchmarks. Section 5 concludes.

1http://www.moosetechnology.org/seaside/pier/tools/
mondrian
2http://aokilab.kyoto-su.ac.jp/jun/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. KLOTZ

2.1 Klotz in a nutshell
Klotz is an agile 3D visualization engine. Visualizations are

made of cubes and lines. Contrary to other 3D visualization
frameworks available on Smalltalk, Klotz maps each graphical
element to an object that belongs to an user-defined domain.
The visual dimensions of a graphical element is the result of
applying metrics on the visualized domain.

Klotz’ objective is to offer a flexible and agile tool to
visualize any arbitrary domain expressed in terms of objects
and relations without any prior preparation. Visualizations
are described by means of a scripting language. Consider the
illustrative script:

1 | subclasses |
2 subclasses := Magnitude subclasses.
3 view nodes: subclasses.
4 view applyLayout: KLSphereLayout new.
5

6 view node: KLEaselCommand using: (KLCube new
fillColor: Color green).

7 view edges: subclasses from: #yourself to:
#superclass.

Line 1 defines a temporary variable subclasses. The
variable is initialized in Line 2 with the all the subclasses of
the class Magnitude. Line 3 adds the objects referenced by
subclasses into the view. Each of the subclass of Magnitude
is represented by a cube. Line 4 positions each cube on an
invisible sphere.

Line 6 adds a new node, Magnitude, the root of the class
hierarchy. The node is colored in green. Line 7 adds as
many edges there are elements in the variable subclasses.
For each subclass, an edge is drawn from the subclass to its
superclass, Magnitude. The result is depicted in Figure 1.

Klotz is intended to be suplementary 3D version of Mon-
drian, its graphic engine is not based on it tought, but built
from the ground. The interface is as similar as it can be
to Mondrian’s, but its intention is not to bring the same
visualizations to 3D figures, but to add new means to analyse
code on another perspective, with another dimention to add
more information on the object representation itself.

Agility of Klotz is expressed via an easel to interactively
“compose” a visualization (Figure 2). The lower part contains
the scripts what is entered by the user. The upper part con-
tains the visualization generated by the script interpretation.

2.2 Scripting visualizations with Klotz
The Klotz scripting language is plain Smalltalk code. Each

script is based on 4 principles:

ricardo.jacas@gmail.com
http://bergel.eu
http://www.moosetechnology.org/seaside/pier/tools/mondrian
http://www.moosetechnology.org/seaside/pier/tools/mondrian
http://aokilab.kyoto-su.ac.jp/jun/index.html


Figure 1: Magnitude subclasses.

• Elements composing the visualization are represented
as nodes. Each node may have a shape and color that
reflect some characteristics of the represented node.

• Relations between elements are represented with edges.
The color and width of a shape depend on some arbi-
trary characteristics of connected objects.

• Elements may be ordered using layouts. A layout may
use edges to direct the ordering.

• Containment is expressed with a view, an object that
enables the construction of the visualization by offering
numerous methods.

The scripting language supports 4 different ways of defining
nodes. The message node: creates an individual node using
some default visual properties (colored in blue, thin black
border line). A variant of it is nodes: to add multiple nodes
in one single instruction. The script

view node: Magnitude.
view node: Number.
view node: Time

is equivalent to

view nodes: { Magnitude. Number . Time}

The result is shown in Figure 3.
The visual representation may be particularized according

to some characteristics of the provided nodes. The message
node:using: and nodes:using: allow graphical cube to be
customized with metrics computed on the represented model.
Consider the example, depicted in Figure 4:

view nodes: Magnitude subclasses using: (KLCube
new height: #numberOfInstanceVariables)

The message numberOfInstanceVariables is sent to each
of Magnitude’s subclasses. The result of numberOfInstance-
Variables defines the height of the node.

The methods edge:from:to: and edges:from:to: use de-
fault black and thin line shape offered by the view. Figure 5
shows the result of the script:

Figure 2: The Klotz Easel

Figure 3: Magnitude, Number and Time.

view nodes: Magnitude subclasses.
view edges: (Magnitude subclasses) from: #yourself

to: MetacelloVersionNumber

The message edges: domain from: fromSelectorOrBlock
to: toSelectorOrBlock constructs an edge for each element
of the domain. The source code is the result of evaluating
fromSelectorOrBlock on the considered node and the target
is obtained by evaluating toSelectorOrBlock. One-arg blocks
and symbols are equally accepted.

2.3 The third dimension
Visualizations in third dimensions convey a “feeling of

immersion” that Klotz is intensively exploiting. A number
of tools and options are offered by either the visualization or
the easel.

Light intensity.
A visualization contains one unique light, a white light

located at the same position than the camera. The light
intensity on a face is at its maximum when the face is or-
thogonal to the camera. When a surface of the face is close
to be lined up with a light ray, the face is dark.

Emphasizing the perspective.
Perspective is the way a solid object is drawn on a two-

dimensional surface so as to give the right impression of their
height, width and depth. Our experience shows that it is
difficult to precisely compare element positions when closely



Figure 4: Magnitude subclasses, the heights shows
the number of instance variables.

Figure 5: Basic edges

located from each other. Perspective may be emphasized
thanks to an increase and decrease perspective commands
offered by the easel.

non-emphasized perspective emphasized perspective 

Figure 6: Emphasizing the perspective

Figure 6 illustrates this situation with a slight variation in
the perspective.

Controlling the camera.
A user looks at a visualization through the view camera.

The easel offers six commands to rotate and move the camera
along every axis.

Layout.
Nodes are ordered using a layout. The default layout that

is used when no other is specified is the horizontal line layout.
A layout is specified using the message applyLayout:. Four
additional layouts are available: cube layout, sphere layout,
block layout, and scatterplot layout.
Cube Layout : This layout orders the nodes in a three-

dimensional cube.

view
nodes: Magnitude withAllSubclasses
using: (KLCube new width:
#numberOfInstanceVariables).

view applyLayout: (KLCubeLayout new).

Sphere Layout : nodes are located on the surface of a sphere,
centered on the center of the view. The following example
places all the subclasses of Magnitude on a sphere (Figure 8):

Figure 7: Cube Layout

Figure 8: Sphere Layout

view nodes: Magnitude subclasses.
view applyLayout: KLSphereLayout new.

view
node: Magnitude
using: (KLCube new fillColor: Color green).

view
edges: Magnitude subclasses
from: #yourself
to: #superclass.

Block Layout : nodes are hierarchically grouped and or-
ganized on a surface. Each group is uniquely colored. The
assigned color is randomly chosen if none is specified in the
shape.

The following script visualizes the structure of Klotz (Fig-
ure 9):



Figure 9: Block Layout

| shape packages block |
shape := KLCube new

height: #numberOfInstanceVariables.
packages :=

PackageInfo allPackages
select: [:pak | pak packageName

matches: 'Klotz-*'].

block := KLBlockLayout new.
packages do: [ :pak |

block with:
{view nodes: pak classes using: shape } ].

view applyLayout: block

The script gives a randomly chosen color to each package
of Klotz. The color is used to paint the classes of each
package. Each node is a colored class. The height represents
the number of attributes.
Scatterplot layout : nodes may be located on a three di-

mensional Cartesian. Each node has a 3d coordinate that is
determined from applying three metric on the represented
model. The following script plots each class of the Klotz-
Kernel package along its number of attributes, number of
methods (Figure 10):

view nodes:
((PackageInfo named:'Klotz-Kernel') classes).

view applyLayout:
(KLScatterCubeLayout new

"blue line"
x: [:cls | cls numberOfLinesOfCode / 1000];
y: #numberOfInstanceVariables; "red line"
z: #numberOfMethods) "green line"

3. IMPLEMENTATION
Klotz is freely available from http://squeaksource.com/

Klotz.html

The current version of Klotz, yet not optimized, provides
support up to 1000 nodes on screen, as well as, 1000 edges
between these nodes.

As shown in Figure 11, the time taken for the easel to
render a scene with the default horizontal line layout is almost
proportional with the quantity of nodes and edges.

On Figure 12 illustrates the linear resource taken by the
layouts.

The Klotz graphic engine its based on the construction

Figure 10: The Klotz Kernel Package

  

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Cube Layout 
Sphere Layout
Circle Layout with Edges

Nodes/Nodes with Edges

T
im

e 
[m

s]

Figure 11: Benchmark (quantity vs time[ms]) for
few nodes/edges

of polygons that are later rendered as regular 2D Morphs.
These polygons vertices are calculated using tridimentional
vectors with absolute coordinates, and using matrices to pro-
duce each transformation (from zooming to the perspective
transformation into 2D points). The 3D shapes are also
basically optimised, the hidden faces (calculated to some
point by need) are not rendered. These calculations, easy
as they sound, are often troublesome since calculation for
coordinates requires decent, and fast, calculations that some-
times can show perfectly reasonable results in theory (like a
point located on the infinity) that must be taken care with
proper aproximations, wich must also fix the not accurate
aproximations made by the Integer/Float classes.

The Klotz graphic generation solely uses Morph facilities.
The most common approach to visualize 3D graphics is to
use OpenGL, a reference in the field. We deliberately decided
to not use OpenGL for a number of practical reasons:

• OpenGL is distributed as a set of natives libraries, de-
pending on the operating system. Libraries are accessed
within Pharo using FFI or Alien, two technologies that
interoperate with native libraries. Unfortunately, the
recent advances with the Pharo virtual machine sig-
nificantly reduced the usability of accessing external
libraries.

• The visualizations produced with Mondrian rarely go

http://squeaksource.com/Klotz.html
http://squeaksource.com/Klotz.html


  

0 1000 2000 3000 4000 5000 6000 7000
0

1000

2000

3000

4000

5000

6000

7000

Cube Layout 
Sphere Layout
Circle Layout with Edges

Nodes/Nodes with Edges

T
im

e
 [m

s ]

Figure 12: Benchmark (quantity vs time[ms]) for
lots of nodes/edges

over 2,000 nodes and 1,000 edges. It is reasonable
to expect similar figure as the upper limit for Klotz.
OpenGL enables sophisticated rendering, including a
high number of rendered polygons and advanced light
composition. We do not expect to have such a need in
a close future.

Basing Klotz on OpenGL is clearly on our agenda. For
this, Alien needs to gain stability, especially with the Pharo
JIT virtual machine (Cog).

4. RELATED WORK

4.1 Lumiere
Lumiere [2] is a 3D Framework,that applies a stage metaphor.

This metaphor implies that all graphics are produced by cam-
eras taking pictures of 3D shapes lit by the lights of the stage.
A stage provides the setting for taking pictures of a com-
position of visual objects we call micro-worlds. Lumiere’s
objective is to implement a 3D graphical support to Pharo
programmers, at a high level of abstraction. This framework
uses OpenGL. As mentioned before, this libraries are entirely
dependent of the OS and the right native OpenGL packages
within the machine itself, to be used.

On the other hand, Klotz do not represent a competitor on
that matter, Klotz is a 3D code visualization engine, its goal
is not focus on the actual quality of the graphic interface,
but on the expressiveness of the representation in order to
achieve a better comprehension of the code. Right now Klotz
graphical interface is a small engine that is completely based
on the Morph engine. This does not mean to be the final
core, eventually the system will need an external graphic
engine, probably based on OpenGL, and that can also be
Lumiere itself.

4.2 CodeCity
CodeCity [4] is a full fledged city metaphor environment,

for code analisys. Its visualization is based on this metaphor,
and its metrics are entirely defined (and chosen carefully)
to faithfully explain software code. This concrete approach

intends to focus not only on the visualization itself, but in
the analysis of software evolution. It also support reverse
engineering.

CodeCity is programmed in VisualWorks Smalltalk on top
of the Moose platform. Just like Lumiere, it uses OpenGL
for rendering.

When it comes to Klotz, not been as expressive as Codecity,
eventually, and depending on the programer’s skills, it can
implement most aspect of its model.

5. CONCLUSION
Klotz is an agile three-dimensional visualization engine.

Klotz visualizes a graph of objects, without any preparation
of the objects. Klotz modeling system allows one to change a
graph definition easily, making it simple and fast to adjust a
desired visualization. Been based on any object as the items
represented on the node it gives great dynamism to the kind
of visualization that it can provide. As future work, we plan
to:

• Implement drag-and-drop support to manage the nodes
easily.

• Add an interface to see the information within the node
on mouse focus, and change it dynamically.

• Optimize and improve the graphical libraries, if possible,
change to a stable, OpenGL based library.

• Add lots of new Layouts, and with time, other figures
to use as nodes.

Acknowledgment.
We thank Patricio Plaza for his effort and participation

on an early version of Klotz.

6. REFERENCES
[1] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu.

Mondrian: An agile visualization framework. In ACM
Symposium on Software Visualization (SoftVis’06),
pages 135–144, New York, NY, USA, 2006. ACM Press.

[2] Fernando Olivero, Michele Lanza, and Romain Robbes.
Lumiére: A novel framework for rendering 3d graphics
in smalltalk. In Proceedings of IWST 2009 (1st
International Workshop on Smalltalk Technologies),
pages 20–28. ACM Press, 2009.

[3] Marian Petre. Why looking isn’t always seeing:
Readership skills and graphical programming.
Communications of the ACM, 38(6):33–44, June 1995.

[4] Richard Wettel and Michele Lanza. Codecity: 3d
visualization of large-scale software. In ICSE Companion
’08: Companion of the 30th ACM/IEEE International
Conference on Software Engineering, pages 921–922.
ACM, 2008.


	Introduction
	Klotz
	Klotz in a nutshell
	Scripting visualizations with Klotz
	The third dimension

	Implementation
	Related Work
	Lumiere
	CodeCity

	Conclusion
	References

