
Identifying Equivalent Objects to Reduce Memory
Consumption

Alejandro Infante, Juan Pablo Sandoval, Alexandre Bergel

Department of Computer Science (DCC)
University of Chile, Santiago, Chile

ABSTRACT
Executing an application may trigger the creation of a large
amount of objects. For many applications, a large portion of
these objects are unnecessary and their creation could simply
be avoided.

We describe a lightweight profiling technique to identity
“equivalent” objects. Such equivalent objects are simply
redundant and may be shared or reused to reduce the memory
footprint. We propose object-centric execution blueprint,
a visual representation to help practitioners identify cases
where objects may be reused instead of being redundant.

1. INTRODUCTION
Garbage collection alleviates the programming activity by

delegating the burden of memory deallocation to the vir-
tual machine. The advances of memory models and garbage
collectors have significantly reduced the cost of managing
memory. Benefits of garbage collection are tremendous: soft-
ware programs are easier to write and are likely to have less
memory-related problems than when written in plain C or
C++. However, an excessive use of garbage collection may
have a significant impact on the application performance.
Creating, initializing and destroying an object consume exe-
cution time and memory space.

Current object-oriented programming languages “make it
too easy” to create objects. Consider the following code
example, inspired by one of our case studies:

”Version 1 of Builder”

Builder>>createNode
ˆ GraphicalElement new color: self defaultColor.

Builder>>defaultColor
”Gray color”
ˆ Color r: 0.5 g: 0.5 b: 0.5

Pharo is an object-oriented language and environment for
the classic Smalltalk-80 programming language 1.

1http://pharobyexample.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The class Builder creates a new colored graphical ele-
ment when receiving the message createNode. The method
defaultColor creates an instance of the class Color. In
Pharo, the class Color is defined as immutable: Color does
not provide mutators for its instance variables and any at-
tempt to modify it raises an error. Once instantiated, the
value of a color cannot be modified.

The version of the class Builder given above is clearly
suboptimal since a new color object is associated to each
element and all these color objects are equals. In Pharo, a
color object weighs 36 bytes.

We found that each ∼18,000 color object creation initiates
a garbage collection, thus incurring the inconvenience of
garbage collecting the memory (e.g., pause in the program
execution, lack of reactiveness in case of CPU intensive
activity).

A possible improvement of the Builder class may be (dif-
ference is indicated in bold):

”Version 2 of Builder”

Builder>>createNode
ˆ GraphicalElement new color: self defaultColor.

Builder>>defaultColor
”Gray color”
defaultColor ifNil: [defaultColor := Color r: 0.5 g:

0.5 b: 0.5].
ˆ defaultColor

In this Version 2, Builder is augmented with a new in-
stance variable called defaultColor. This variable acts as a
memorization cache to keep a unique reference of the default
color.

Identifying the necessary changes to move from Version
1 to Version 2 of Builder does not present any significant
challenge on this contrived example. However, typical object-
oriented programs create and destroy a large number of ob-
jects. Identifying the objects that are unnecessarily created
or destroyed too early presents some challenges[?]. Identify-
ing places of redundant object creations is not trivial in many
cases. It often requires a deep knowledge of the program
intent and implementation. Unfortunately, traditional mem-
ory profiling tools do not give any indication about whether
objects are redundant or not. As discussed in the related
work section, traditional memory analyzers are limited to
providing metrics about the heap consumption.

This paper is about a profiling technique to help software
engineers identify situations for which reusing or sharing an
object is beneficial.

This paper presents a lightweight profiling technique that

1

http://pharobyexample.org

identifies equivalent objects, intended to be shared to reduce
the memory footprint. Our profiler identifies for a given
program execution objects that are both non-mutable and
are structurally equals. Equality is verified by comparing
object snapshots, a kind of hash value that does not rely on
the object identity.

Our profiler is accompanied with Object-Centric Execution
Blueprint, a visual representation of the memory consumption
to help practitioners identify sets of equivalent immutable
objects that may safely be replaced by one representative
shared object. We have successfully used the blueprint to
detect and remove a number of redundant objects in a Pharo
real world application.

The paper is structured as follows. Section 2 presents
our memory profiling in a nutshell. Section 3 describes a
case study we have carried out on the Roassal application.
Section 4 presents the visual support given to the practitioner
to identify critical situations. Section 5 briefly describes the
implementation of our profiler. Section 6 gives an overview
of the related work. Section 7 concludes and presents future
work.

2. IDENTIFYING EQUIVALENT OBJECTS
We propose to optimize applications by identifying groups

of equivalent objects. Once identified, a group of equiv-
alent objects may be merged into a unique sharable and
reusable object. A definition of object equivalence is pro-
vided (Section 2.1) and how such equivalence is measured
in an application in the Pharo programming language (Sec-
tion 2.2).

2.1 Object equivalence
Two objects o1 and o2 are said to be equivalent if all objects

pointing to o1 may instead point to o2 without affecting the
program semantics and execution. We say that o1 and o2
are equivalent if:

(a) o1 and o2 are instances of the same class – This
requirement implies that two objects being from differ-
ent classes are not interchangeable. This requirement
is not strictly necessary, meaning that two objects may
be inter-changeable even if they have different classes
as long as their interface and contract is similar. How-
ever, this requirement significantly simplifies our profiling
technique.

(b) both o1 and o2 have identical state – This require-
ment implies that each pair of corresponding field values
in both objects are either a pair of identical values or a
pair of references to objects which are themselves equiv-
alents. For instance, if o1 := Point x:5 y:4 and o2 :=
Point x:5 y:4 then o1 and o2 have identical state, be-
cause their field values in both objects are identical.

(c) both o1 and o2 do not mutate once their construc-
tion has completed – i.e., after the control flow has
left the initialize method. This implies that side ef-
fects are permitted up to the point the object is initialized.
If an object changes its state after its creation, such ob-
ject cannot be equivalent to any other object. In practice,
an object is initialized within a factory method located
on the metaclass. Examples of such factory methods
are new and new:. Sending the message new returns an
object supposedly initialized (the method new invokes

initialize). We designate a factory method as a class
method returning an instance of the class.

(d) neither o1 nor o2 receive the identityHash and ==

message – It forbids any attempt to access the identity
of an object. Receiving a message identityHash or ==

makes the object receiver not equivalent to any other
object. In Pharo, the identity hash value is a value that
reflects an internal number in the virtual machine. The
reference equality compares two memory locations.

(e) Neither the creation of o1 nor o2 perform any
side effect on the executing context – It implies
that during the creation of an object, side effects are
allowed only on the object under creation. Any side effect
on another object carried out before exiting a factory
method makes the object not equivalent to any other
object. Our motivation behind this requirement is that
if creating an object performs a side effect, then this
creation cannot be avoided else the application behavior
is not preserving, even if the object is redundant.

The proposed definition of object equivalence is conserva-
tive, meaning that (i) if two objects are equivalent, then one
of them is redundant and (ii) two redundant objects are not
necessarily equivalent.

This definition is similar to the definition of “mergeabil-
ity” given by Marinov and O’Callahan [2]. Section 6 detail
difference and motivate the need for another definition.

2.2 Profiling
We have built a profiler that identifies groups of equivalent

objects. During an execution, our profiler stores in a global
table recorded information for each object created in the
profiled application. The profiler knows for each object its
bit of “history” to determine after the program execution
whether that object is equivalent to other objects.

More specifically, our profiler records for each object (i)
the number of times it has mutated after having left a fac-
tory method and (ii) whether it has received the message
identifyHash.

In Pharo, everything is an object, and everything happens
by sending messages. Nevertheless, certain messages are byte
coded by the compiler and no lookup is performed. This is
the case of the == method. Because of this, detecting when
an object receives the message == is difficult and, in fact, it
is unsolved issue.

After a profiling, it compares all objects and categorizes
them in:

• groups of equivalent objects – All objects in these groups
have the same final state and they did not mutated
during the execution after their creation, it means that
they had the same state during the execution.

• groups of near-to-be equivalent objects – All objects
in these groups partially meet our object equivalent
definition. We consider that two object are near-to-be
equivalent if they do not meet some requirements, for
instance, without meeting requirement (c) and (d).

3. CASE STUDY
We have carried out an analysis of the Roassal application

and identified a number of situations in which objects have
been unnecessarily created.

2

Roassal. We have analyzed Roassal, an agile visualization
engine2. Roassal allows one to build sophisticated visual-
izations, pluggable for any arbitrary domain model. Many
objects are involved in a typical Roassal visualization. Each
visual element comes with a web of interconnected objects
to offer support for interaction and representation.

Excessive use of memory is a barrier from making Roassal
scalable: visualizations get slower and less responsive. In
addition, by being realized within the virtual machine, the
garbage collection overhead does not explicitly appear in a
profiling report.

Equivalent objects. Roassal comes with a large amount
of tests. The test coverage of Roassal is about 80%, giving
us confidence that a fair portion of Roassal features are
exercised by unit tests. We have profiled the execution of
Roassal unit tests and extracted the following information.

Running Roassal unit tests produces 112,513 objects, in-
stances of Roassal classes. Our profiler has identified that
10.97% of these objects are redundant with the remaining
89.03% of the objects. These 10.97% represents the portion
of objects that are unnecessary, and thus the possible gain
of the reduction of the object construction.

The largest group of equivalent of objects we have identified
is made of instances of the class RONullShape. Running the
tests of Roassal instantiates this class 13,343 times for which
11,777 objects are equivalent between them. This result
means that 11,776 objects are simply unnecessary.

The second largest group is made of all instances of the
class RODraggable. The 3,027 instances of this class are all
equivalent, indicating the need of a singleton pattern.

Improvement of Roassal. We went through some of the
group of equivalent objects mentioned in the previous section
and refactored Roassal accordingly. We have reduced the
amount of created objects by 5.1%. The total amount of
objects went from 112,513 to 106,806. This 5.1% of reduc-
tion represents a gain of 45Kb approximately, leading to a
reduction of 1.4% of the memory consumption.

We have refactored Roassal by implementing singleton
patterns on various classes. The class RODraggable has been
refactored as follows:

RODraggable class>>elementToBeAdded
instance ifNil: [instance := self new].
ˆ instance

The singleton pattern is implemented in bold.

4. VISUAL SUPPORT
Object-centric execution blueprint is a visual aid to identify

groups of equivalent (and therefore redundant) objects. We
use a polymetric view [1] for that purpose, since we relate
different metrics for each structural visual element.

Our blueprint is made up of colored boxes and inner boxes
and links (Figure 1). Such visual representation of the pro-
gram execution is obtained after the completion of the exe-
cution.

Nesting outer boxes represents classes. Inner boxes repre-
sent groups of objects that are either equivalent or near-to-be
equivalent (i.e., without meeting requirement (c) and (d),
about the mutation).

2http://objectprofile.com/#/pages/products/roassal/
overview.html

C2

C1

color # objects

no-mutable
objects

Object Group

Class

black: # object groups > 5% (many groups)
white: # object groups <= 5% (few groups)

C1

C2

C2 inherits C1

border-width:
identityHash calls

red: # mutable objects = 0
white: # mutable objects > 0

color:

Figure 1: Object-Centric Execution Blueprint

Each object group is characterized with two metrics and
two properties:

• height is the amount of (mutable and immutable) ob-
jects that belong to the group, using a logarithmic
scale;

• width is the amount of immutable objects belonging to
the group, using a logarithmic scale;

• presence of a bold border indicates identityHash has
been invoked on any object of the object group;

• color can be red or white, red if all the objects in the
object group do not mutate and white if at least one
of them mutate.

An object group painted in red visually indicates that
all the objects belonging to this group are equivalent. A
white group indicates that the objects are near-to-be equiva-
lent. Such groups may require some further action from the
software engineer to make these objects equivalent.

It frequently happens that instances of a class are hetero-
geneous, which may result in many different groups. Such
situations are discarded from the visualization by using a
threshold number of groups. In our experiment, we consider
a threshold of 5, meaning that groups of a class are shown
if at most 5 groups for 100 instances. The purpose of this
arbitrary heuristic is to reduce the amount of data that would
be difficult to improve.

Figure 1 shows that C1 has three subclasses. Each of them
tells a different story and we need to deal with them in
different ways.

From left to right, class C2 is black filled, meaning that
instances of C2 cannot be grouped into equivalent objects.

The class in the middle has 5 object groups inside, which
means that in this experiment the instances of this class can
only have 5 possible states. Furthermore, one of these groups
is colored red, indicating no mutation occurs for that group.
Objects belonging to that group would have been equivalent
if they had a non bolded border: the message identityHash

is sent to the objects of this group.
The last class of the figure shows a single red object group,

so all the instances of this class do not mutate and have
the same state across all the execution, also nobody called
identityHash on them. This is an excellent opportunity to
use the singleton pattern and reuse a single object to fulfill
the job of all the previously used objects.

3

http://objectprofile.com/#/pages/products/roassal/overview.html
http://objectprofile.com/#/pages/products/roassal/overview.html

RODraggableWithVelocity

RODraggable

RONullShape

ROArrow ROExtensibleParent

Figure 2: Object-Centric Execution Blueprint before optimization

Also the visualization provides some interactions to provide
the user the opportunity go deep into the experiment. Just
moving the mouse over a class displays as a tooltip its class
name, the number of instances and the memory consumed
by its instances. Moving over an object group displays the
number of objects, the amount of mutable and non-mutable
objects. Furthermore the tooltip displays whether any object
in the group caused a side effect on its creation, a requirement
settled before reusing the objects.

Clicking the shapes also allows the user to inspect some
objects or browse some classes.

Figure 2 shows an excerpt of the visualization for the unit
test execution of Roassal.

5. IMPLEMENTATION
We briefly describe the two key ingredients to implement

our approach. Our Memory profiler is available under the
MIT License3.

5.1 Gadget profiling
Gadget Profiler4 is a framework for method instrumenta-

tion. It allows the programmer to inject code before and after
every method of an automatically set of selected classes. Also
it provides some essential information about the execution
to be used by the injected code, like the receiver and the
arguments of the message.

Memory Profiler is built using Gadget Profiler. Also
when a method is called we check if the method is the
identityHash, performs a mutation or causes an external
side effect. Finally, it groups the objects as we described
before.

5.2 Snapshotting objects
Keeping track of the side effects may be done in a number of

fashions (e.g., keeping track of the write bytecodes, modifying
the abstract syntax tree [3]). We employ here a technique
based on object snapshotting. We define an object snapshot
as an integer that represents the complete state of an object.
This integer is computed using a bitXor operation between
the identity hash of attributes and the identity hash of object
class.

1 Object>>snapshotAsInteger
2 | index value |

3http://smalltalkhub.com/#!/~ainfante/
MemoryProfiler
4http://smalltalkhub.com/#!/~ainfante/
GadgetProfiler

3 index := self class instSize.
4 value := self class gadgetIdentityHash.
5 [index > 0]
6 whileTrue:
7 [value := (value bitShift: 1) bitXor: (self instVarAt:

index) gadgetIdentityHash.
8 index := index − 1].
9 ˆ value

An object snapshot is useful to compare objects states.
Comparing objects states we can detect: (i) objects that
have the equivalent state, and (ii) if an object has a different
state after a method execution. Both features are essential
to detect equivalent objects.

6. RELATED WORK
Marinov et al. presented Object Equality Profiling (OEP),

a profiling technique to discover opportunities for replacing a
set of equivalent object instances with a single representative
object [2].

Their tool performs a dynamic analysis that records all
the objects created during a particular program run. The
tool partitions the objects into equivalence classes, and uses
collected detail timing information to determine when ele-
ments of an equivalence class could have been safely collapsed
into a single object. They use an instrumentation byte code
technique to record fine-grained information. They insert
instrumentation at the following program points: alloca-
tion sited for objects and arrays, field writes, array element
writes, field reads, array element reads among others. Adding
a considerable overhead.

Our object snapshot technique takes snapshots before and
after a method execution, and saves the last state of the ob-
jects (the last snapshot) causing a significantly lower execu-
tion overhead. And having a trade-off between overhead and
accuracy. We also propose object-centric execution blueprint
as a visual aid to detect, understand, and delete redundant
object.

7. CONCLUSION & FUTURE WORK
Currently, the large majority of code profilers and de-

buggers use inadequate abstractions in their analysis. We
believe this is a critical situation and hope the tool and ideas
presented in this paper will contribute to addressing it.

Thanks to the analysis above, we eliminated more than
5.1% of the identified unnecessary objects refactoring code
using singleton pattern, but working on the analysis and
the abstraction we expect to categorize possible source code

4

http://smalltalkhub.com/#!/~ainfante/MemoryProfiler
http://smalltalkhub.com/#!/~ainfante/MemoryProfiler
http://smalltalkhub.com/#!/~ainfante/GadgetProfiler
http://smalltalkhub.com/#!/~ainfante/GadgetProfiler

refactoring to eliminate the totality of redundant objects.

Acknowledgements
Juan Pablo Sandoval Alcocer is supported by a Ph.D. scholar-
ship from CONICYT and AGCI, Chile. CONICYT-PCHA/
Doctorado Nacional/2013-63130199. This work has been
partially funded by Program U-INICIA 11/06 VID 2011,
grant U-INICIA 11/06, University of Chile, and FONDE-
CYT project 1120094.

8. REFERENCES
[1] Michele Lanza and Stéphane Ducasse. Polymetric

views—a lightweight visual approach to reverse
engineering. Transactions on Software Engineering
(TSE), 29(9):782–795, September 2003.

[2] Darko Marinov and Robert O’Callahan. Object equality
profiling. In Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, OOPSLA ’03,
pages 313–325, New York, NY, USA, 2003. ACM.

[3] Jorge Ressia. Object-Centric Reflection. Phd thesis,
University of Bern, October 2012.

5

	Introduction
	Identifying Equivalent Objects
	Object equivalence
	Profiling

	Case Study
	Visual Support
	Implementation
	Gadget profiling
	Snapshotting objects

	Related Work
	Conclusion & Future Work
	References

