
Visual Patterns with Profiling Blueprint

Alexandre Bergel1, Vanessa Peña1, Chris Thorgrimsson2, Chung Ho Huang2

1PLEIAD Lab, Department of Computer Science (DCC), University of Chile
Object Profile, Chile

2Lam Research, USA

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.6 [Software Engineering]: Programming
Environments—integrated environments, interactive environ-
ments; D.2.8 [Metrics]: Performance measures

Keywords
Performance, Visualization, Pharo

1. PROFILING BLUEPRINT
Profiling blueprint is a visual representation of software

execution [1]. As most profiling reports, profiling blueprint
offers a post-mortem report of an execution. Such a profile
blueprint aims at rapidly identifying software components
that poorly perform or are considered to be a bottleneck.

An example of such a blueprint is given in Figure 1. The
figure depicts a call graph obtained from the execution of a
benchmark. The application we are using here as the running
example is Roassal, an agile visualization engine1.

Methods. Each box visually represents a method. The
height of a box is proportional to the time spent in the
method. Tall methods are therefore methods in which the
virtual machine spent a significant amount of time executing
them. Methods marked with A, B, C, D and F are time
consuming.

The width of a method indicates the number of times the
method is executed. Method A, B, C, D are very thin, meaning
that these methods are executed a few times. Large methods
such as E, F and G are executed many times. The exact values
of the time spent and the amount of executions are given
by a tool tip text when the mouse cursor is hovered over a
method.

The method height is linear to the total execution time
of the method. It therefore includes the time spent in the

1http://objectprofile.com/roassal-home.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Dyla ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2041-2 ...$10.00.

#executions

execution
time

gray =
side effect
yellow = no
side effect

A

B

D

C

E

F

1

2

3
Method 1 calls Method 2.
Method 3 calls Method 1

G

Figure 1: Example of a Blueprint Execution

1

http://objectprofile.com/roassal-home.html

called methods. The width uses a logarithmic scale instead
of a linear one to cope with large variations.

Method invocations. The blueprint visualizes the execution
control flow along the method call graph. Edges indicate
invocations between two methods: a calling method is located
above the methods it calls as long as the control flow is a
tree. It frequently happens that the control flow forms a
graph, in that case the location of edge’s extremities in a
method indicates the calling method and called method, as
shown in Figure 1. Method F calls E. The bottom of a calling
method box is always linked to the top of a called method
box. Additionally, the layout-construction algorithm tries to
place the calling methods above the called ones

Mutation. An important aspect of our blueprint is to indi-
cate the presence of state mutation, resulting from side-effect.
The color of the method indicates whether or not the object
receiver or an argument has been modified by the method.

A method that mutates at least one variable in the object
receiver or in the method arguments is shaded in gray. A
method that does not modify the object is shaded in yellow.

For example, the source code of the method B is

ROElement>>addAll: els
els do: [:el | self add: el]

The method addAll: does not directly performs a muta-
tion, however, it invokes add:, marked with a C in the figure,
which itself adds an element into a collection held by the
object that receives the method call addAll:.

The methods E and F are visually represented as large and
tall yellow boxes, meaning that these two methods take a sig-
nificant amount of CPU time, are executed many times, and
do not modify the receiver and arguments. These methods
are candidates for being cached using a memorization.

Implementation. The profiling blueprint is implemented
for the Pharo2 and VisualWorks3 programming languages,
two Smalltalk dialects. The runtime information is obtained
using the Spy profiling framework [2]. Spy allows one to
easily define a code execution profilers.

Visualization of the profile is carried out using Roassal4,
an agile visualization engine. Roassal offers facilities to easily
define and represent polymetric views [3] such as the profiling
blueprint.

2. EXECUTION PATTERNS

2.1 Time distribution
One strength of a visual representation is to let a human

observer identify visual patterns [4]. We have discriminated
two types of patterns related to the time distribution and
the mutation.

Figure 2 gives six visual patterns related to time distribu-
tion that often occurs in profiling blueprint.

Pattern A - sequential calls. The method a directly calls
a number of methods, 3 example methods are given, b, c

2http://pharo-project.org
3http://www.cincomsmalltalk.com/main/products/
visualworks/
4http://objectprofile.com/#/pages/products/roassal/
overview.html

a

b c d

a

b

A B C

D

a

b

a

b

a

b

a

b

E F

Figure 2: Visual patterns

and d. The height of a is the sum of the height of b, c and d.
One can naturally deduce that the three calls to b, c, d are
likely to be sequential. The methods b, c, d have the same
width as a. This means that these calls are not contained in
a loop.

The profiling blueprint orders the calls according to the
sequence occurring at execution. The method b is called
before c, itself called before d. However, this is given as a
mere indication that may not reflect the actual execution,
for example if the order is not always constant. The source
code of a is accessible via a tool tip to assert this.

Pattern B - indirection. The method a directly calls the
method b and the visual aspect of b is the same as a. Method
a is simply calling b without doing any significant additional
computation.

Pattern C - sporadic execution. The method a is invoked
many times, shown from the width of its box. The method b

is invoked less than a. The call to b is realized in infrequent
situations.

Pattern D - multiple execution. The method b is exe-
cuted several times, and the height of b is the same as a. The
call of b is likely to be contained within a loop in a. This
pattern is the opposite of Pattern C.

This pattern is illustrated by the methods D and F in
Figure 1.

Pattern E - immediate value. The method b is executed
many more times than a, which is indicated from the dif-
ference of the width. However, it does not consume much
execution time since it is horizontally thin. The method
b is likely to be computationally cheap like returning an
immediate value (e.g., being constant or a variable accessor).

Pattern F - recursion. Recursive calls are indicated with

2

http://pharo-project.org
http://www.cincomsmalltalk.com/main/products/visualworks/
http://www.cincomsmalltalk.com/main/products/visualworks/
http://objectprofile.com/#/pages/products/roassal/overview.html
http://objectprofile.com/#/pages/products/roassal/overview.html

G H

I

a

b

a

b

a

b

c

Figure 3: Visual patterns

crossing edges. The method a calls b, which itself calls a.

2.2 Object mutation
Three different patterns may involve methods that do not

modify the object receiver or the arguments (Figure 3).

Pattern G - non altering delegation. The method a

calls method b. Both are executed just once, thus visually
represented as thin and long boxes. The method b does not
cause a side effect on the object receiver. No benefit will be
gained by caching b if it is called just once.

Pattern H - non altering delegating chain. The method
a calls the method b several times, which itself calls c. The
method b and c do not do a side effect on their object receiver
and are executed the same amount of times since they have
the same width.

This chain shows that the method c is time consuming
since a, b and c have the same height. Introducing a cache
in the Method b will leads to a performance improvement.

Pattern I - non altering and time consuming delega-
tion. The method b is called several times by a; b is time
consuming and does not modify the object receiver. Caching
b will produce a performance gain.

3. DEMONSTRATION
The Kai profiler will be demonstrated to the Dyla work-

shop. Kai offers a range of interactive actions that will be
presented. We hope the demonstration will trigger some dis-
cussion with respect to the usability of Kai and its possible
extensions.

The objectives of the demonstrations are

• to present the Kai profiler

• to compare Kai with other code execution profilers

• to discuss the relevance of Kai in terms of performance
problems

Acknowledgment. This work has been partially funded by
Program U-INICIA 11/06 VID 2011, grant U -INICIA 11/06,
University of Chile, and FONDECYT project 1120094.

4. REFERENCES
[1] A. Bergel, F. Bañados, R. Robbes, W. Binder, Execution

profiling blueprints, Software: Practice and Experience
42 (9) (2012) 1165–1192. doi:10.1002/spe.1120.

[2] A. Bergel, F. B. nados, R. Robbes, D. Röthlisberger,
Spy: A flexible code profiling framework, Journal of
Computer Languages, Systems and Structures 38 (1).
doi:10.1016/j.cl.2011.10.002.

[3] M. Lanza, S. Ducasse, Polymetric views—a lightweight
visual approach to reverse engineering, Transactions on
Software Engineering (TSE) 29 (9) (2003) 782–795.
doi:10.1109/TSE.2003.1232284.

[4] C. Ware, Information Visualisation, Elsevier, Sansome
Street, San Fransico, 2004.

3

http://bergel.eu/download/papers/Berg11f-profiling.pdf
http://bergel.eu/download/papers/Berg11f-profiling.pdf
http://dx.doi.org/10.1002/spe.1120
http://bergel.eu/download/papers/Berg10f-Spy.pdf
http://dx.doi.org/10.1016/j.cl.2011.10.002
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://dx.doi.org/10.1109/TSE.2003.1232284

	Profiling Blueprint
	Execution patterns
	Time distribution
	Object mutation

	Demonstration
	References

