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1. PROFILING BLUEPRINT
Profiling blueprint is a visual representation of software

execution [1]. As most profiling reports, profiling blueprint
offers a post-mortem report of an execution. Such a profile
blueprint aims at rapidly identifying software components
that poorly perform or are considered to be a bottleneck.

An example of such a blueprint is given in Figure 1. The
figure depicts a call graph obtained from the execution of a
benchmark. The application we are using here as the running
example is Roassal, an agile visualization engine1.

Methods. Each box visually represents a method. The
height of a box is proportional to the time spent in the
method. Tall methods are therefore methods in which the
virtual machine spent a significant amount of time executing
them. Methods marked with A, B, C, D and F are time
consuming.

The width of a method indicates the number of times the
method is executed. Method A, B, C, D are very thin, meaning
that these methods are executed a few times. Large methods
such as E, F and G are executed many times. The exact values
of the time spent and the amount of executions are given
by a tool tip text when the mouse cursor is hovered over a
method.

The method height is linear to the total execution time
of the method. It therefore includes the time spent in the

1http://objectprofile.com/roassal-home.html
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Figure 1: Example of a Blueprint Execution
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called methods. The width uses a logarithmic scale instead
of a linear one to cope with large variations.

Method invocations. The blueprint visualizes the execution
control flow along the method call graph. Edges indicate
invocations between two methods: a calling method is located
above the methods it calls as long as the control flow is a
tree. It frequently happens that the control flow forms a
graph, in that case the location of edge’s extremities in a
method indicates the calling method and called method, as
shown in Figure 1. Method F calls E. The bottom of a calling
method box is always linked to the top of a called method
box. Additionally, the layout-construction algorithm tries to
place the calling methods above the called ones

Mutation. An important aspect of our blueprint is to indi-
cate the presence of state mutation, resulting from side-effect.
The color of the method indicates whether or not the object
receiver or an argument has been modified by the method.

A method that mutates at least one variable in the object
receiver or in the method arguments is shaded in gray. A
method that does not modify the object is shaded in yellow.

For example, the source code of the method B is

ROElement>>addAll: els
els do: [:el | self add: el ]

The method addAll: does not directly performs a muta-
tion, however, it invokes add:, marked with a C in the figure,
which itself adds an element into a collection held by the
object that receives the method call addAll:.

The methods E and F are visually represented as large and
tall yellow boxes, meaning that these two methods take a sig-
nificant amount of CPU time, are executed many times, and
do not modify the receiver and arguments. These methods
are candidates for being cached using a memorization.

Implementation. The profiling blueprint is implemented
for the Pharo2 and VisualWorks3 programming languages,
two Smalltalk dialects. The runtime information is obtained
using the Spy profiling framework [2]. Spy allows one to
easily define a code execution profilers.

Visualization of the profile is carried out using Roassal4,
an agile visualization engine. Roassal offers facilities to easily
define and represent polymetric views [3] such as the profiling
blueprint.

2. EXECUTION PATTERNS

2.1 Time distribution
One strength of a visual representation is to let a human

observer identify visual patterns [4]. We have discriminated
two types of patterns related to the time distribution and
the mutation.

Figure 2 gives six visual patterns related to time distribu-
tion that often occurs in profiling blueprint.

Pattern A - sequential calls. The method a directly calls
a number of methods, 3 example methods are given, b, c

2http://pharo-project.org
3http://www.cincomsmalltalk.com/main/products/
visualworks/
4http://objectprofile.com/#/pages/products/roassal/
overview.html
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Figure 2: Visual patterns

and d. The height of a is the sum of the height of b, c and d.
One can naturally deduce that the three calls to b, c, d are
likely to be sequential. The methods b, c, d have the same
width as a. This means that these calls are not contained in
a loop.

The profiling blueprint orders the calls according to the
sequence occurring at execution. The method b is called
before c, itself called before d. However, this is given as a
mere indication that may not reflect the actual execution,
for example if the order is not always constant. The source
code of a is accessible via a tool tip to assert this.

Pattern B - indirection. The method a directly calls the
method b and the visual aspect of b is the same as a. Method
a is simply calling b without doing any significant additional
computation.

Pattern C - sporadic execution. The method a is invoked
many times, shown from the width of its box. The method b

is invoked less than a. The call to b is realized in infrequent
situations.

Pattern D - multiple execution. The method b is exe-
cuted several times, and the height of b is the same as a. The
call of b is likely to be contained within a loop in a. This
pattern is the opposite of Pattern C.

This pattern is illustrated by the methods D and F in
Figure 1.

Pattern E - immediate value. The method b is executed
many more times than a, which is indicated from the dif-
ference of the width. However, it does not consume much
execution time since it is horizontally thin. The method
b is likely to be computationally cheap like returning an
immediate value (e.g., being constant or a variable accessor).

Pattern F - recursion. Recursive calls are indicated with
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Figure 3: Visual patterns

crossing edges. The method a calls b, which itself calls a.

2.2 Object mutation
Three different patterns may involve methods that do not

modify the object receiver or the arguments (Figure 3).

Pattern G - non altering delegation. The method a

calls method b. Both are executed just once, thus visually
represented as thin and long boxes. The method b does not
cause a side effect on the object receiver. No benefit will be
gained by caching b if it is called just once.

Pattern H - non altering delegating chain. The method
a calls the method b several times, which itself calls c. The
method b and c do not do a side effect on their object receiver
and are executed the same amount of times since they have
the same width.

This chain shows that the method c is time consuming
since a, b and c have the same height. Introducing a cache
in the Method b will leads to a performance improvement.

Pattern I - non altering and time consuming delega-
tion. The method b is called several times by a; b is time
consuming and does not modify the object receiver. Caching
b will produce a performance gain.

3. DEMONSTRATION
The Kai profiler will be demonstrated to the Dyla work-

shop. Kai offers a range of interactive actions that will be
presented. We hope the demonstration will trigger some dis-
cussion with respect to the usability of Kai and its possible
extensions.

The objectives of the demonstrations are

• to present the Kai profiler

• to compare Kai with other code execution profilers

• to discuss the relevance of Kai in terms of performance
problems
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