
Toward Lean Development in
Formally Specified Software

Processes

María Cecilia Bastarrica1, Julio Ariel Hurtado Alegría1,2, and

Alexandre Bergel1

1 Computer Science Department, Universidad de Chile

Blanco Encalada 2120, Santiago, Chile
2 IDIS Research Group, University of Cauca

Street 5 # 4–70, Popayán, Colombia

{cecilia,jhurtado,abergel}@dcc.uchile.cl

Abstract

Formally specifying the software development process has been the way followed by several
companies for making development more predictable. However this formality has frequently
introduced bureaucracy into the process. Lean software development is an agile practice that
promotes developing only those work products that are required, i.e., no waste should be in-
cluded in the process. In this paper we present an automatic means of detecting and localizing
the presence of certain type of waste in software processes that are formally specified using
SPEM 2.0. We show our findings by analyzing the Scrum process model and the software de-
velopment process model of a medium size software development company in Chile.

Keywords

Lean software development, software process improvement, software process model analysis

Session I: Management of the failure correction process

1 Introduction

Lean software development is an agile practice that promotes quality and productivity by focusing on
core issues and not investing effort executing non essential tasks and building non required work
products [16] . Software companies tend to define and formalize their development processes in an
effort to make them more predictable. This formalization is a hard task and implies a huge investment,
so it is natural to try to get the highest return of investment out of it. Trying to cover all possible cases,
it is not rare to introduce unnecessary tasks and work products as part of the formalized process, and
this may build up waste into the process. It is not easy to identify the existence of waste, and even
harder to localize it within the process. A typical case of waste is developing work products that no-
body needs, i.e., that are neither deliverables nor required for executing any task within the process.
We will focus on this kind of waste.

We have developed AVISPA, a tool for visual analysis of software processes. It is able to identify a
series of error patterns that we have found to be frequent in practice [5] . In this paper we extend
AVISPA so that it is able to also identify certain type of waste –useless work products – in software
processes formally specified in Eclipse Process Framework.

We apply the extended tool in two quite diverse scenarios: the Scrum process specification publicly
available from the EPF Community, and the software development process of a medium size software
company in Chile. In the former case, no waste of the type we are looking for (useless work products)
has been found as expected, provided that Scrum is an agile method. In the latter case, we were able
to identify and localize several waste elements, and all of them are opportunities for software process
improvement.

The rest of the paper is organized as follows. In Section 2 a precise statement of the problem being
addressed is detailed. The AVISPA tool and the mechanics of waste detection are described in Sec-
tion 3. Section 4 shows the application of our tool for localizing waste in the two aforementioned soft-
ware process models. Related work is discussed in Section 5. Finally, some conclusions and future
work are described in Section 6.

2 Problem Statement: Localizing Waste in Formal Processes

Lean software development implies the application of seven principles [15] : eliminate waste, build
quality in, create knowledge, defer commitment, deliver fast, respect people, and optimize the whole.
One of the most important of these principles is eliminating waste. But it is not necessarily clear the
form that waste may take within a software process, and even less clear how it could be identified, let
alone automatically localized. In this paper we will not necessarily focus on agile processes. Neverthe-
less, eliminating waste not only applies to this kind of processes; it may even be more relevant in the
context of non agile processes as will be apparent from the experimentation presented in Section 4.2.

Formal processes unambiguously specify who does what and when, and which work products are
built/modified as a result. SPEM 2.0 [13] is the OMG standard notation for specifying software proc-
esses, and the Eclipse Process Framework1 is a platform that allows the specification of SPEM 2.0
processes. In a lean software development process there should be no waste, therefore any work
product should be either a deliverable or an input for some other task within the process itself, and it
should be specified accordingly. SPEM 2.0 provides primitives for specifying that a work product is a
deliverable. Therefore, if we find a work product that is neither specified as a deliverable nor as an
input for any other task, then we are in one of the following scenarios, all of them problematic:

1. the work product is actually necessary for performing some task, but we have forgotten to specify
it, so we have found an underspecification;

1
 EPF: http://www.eclipse.org/epf/

Session I: Management of the failure correction process

2. the work product is actually a deliverable, but it was not defined as so, so we have found another
form of underspecification;

3. the work product is not really necessary, so we have found waste in the process: a useless work
product.

3 Automatic Waste Detection

This section describes the whole procedure for automatically localizing the useless work product kind
of waste in formal processes specified in EPF. First, we describe AVISPA, a tool for analyzing formal
software processes. Afterwards, we describe the extension we propose to add to AVISPA so that it
could also be applied for localizing waste.

3.1 Software Process Blueprints and AVISPA

Software processes may be composed by several hundreds of elements of diverse kinds. This issue
makes sometimes difficult to analyze the quality of a process just through inspections. In [6] , we have
proposed Software Process Blueprints that are partial views of the software process that allow the
process engineer to visually analyze its quality. Each of these views focuses on one essential SPEM
modeling element: role, task and work product, and thus we have a Role Blueprint, a Task Bluprint
and a Work Product Blueprint. All of them are graphs formed by nodes and edges/arcs.

In the Role Blueprint nodes represent roles whose size corresponds to the number of tasks in which
the role is involved. Also, an edge between two nodes represents the existence of collaboration be-
tween the two roles to perform a task. Therefore nodes that are too big may reveal overloaded roles,
and disconnected nodes show roles that do not collaborate.

In the Task Blueprint nodes represent tasks, whose height is the number of input work products and
whose width is the number of output work products for that task. An arc from one task to another,
represents precedence, i.e., an output work product of the former task is an input work product for the
latter task. In this way, very wide nodes suggest tasks without a clear goal, i.e., whose purpose is to
produce a variety of work products.

In the Work Product Blueprint nodes are work products, where their height represents the number of
tasks that require the work product as an input, and their width is the number of tasks that cre-
ate/modify it. In this case a node that is too high reveals that certain work product is required by sev-
eral tasks, and it therefore may become a bottleneck. Figure 1 depicts the Work Product Blueprint of
the software process of a medium size company; there we can clearly see that the node correspond-
ing to System Requirements Specification is much higher than most of the others suggesting that
many tasks require it.

Also the existence of disconnected subgraphs in any blueprint reveals a misspecification in the proc-
ess. However, in Process Model Blueprints, nodes that are much larger than others could suggest
anomalies, but it is the responsibility of the process engineer to determine if they are actual errors,
improvement opportunities, or if on the contrary they are defined that way on purpose. Moreover, it is
not clear how big could be considered too big.

Session I: Management of the failure correction process

Figure 1: Work Product Blueprint of a Chilean software company

In [5] , we proposed AVISPA, a tool based on blueprints that automatically identifies and localizes a
series of error patterns

2
. Table 1 describes those error patterns already identified. In AVISPA error

patterns are highlighted in color, so that it is evident when there is a possible error. For this purpose
some assumptions have been made such as defining that an element that is more than one standard
deviation larger than the mean is considered too big and suggests the presence on an error. This as-
sumption has worked fine in practice so far. For example, in Figure 2 we show the Work Product
Blueprint for the Scrum process; AVISPA has highlighted the Project Backlog as a work product that is
too demanded, and as such it may be a bottleneck in the process as a whole. A thorough analysis of
the Scrum process using AVISPA can be found in [4] .

Table 1: Error patterns identified by AVISPA

Error pattern Description Localization Identification

No guidance
associated

An element with no
guidance associated

any blueprint A completely white node.

Overloaded role A role involved in too many
tasks

Role Blueprint Nodes over one standard
deviation larger than the
mean

Isolated role A role that does not
collaborate

Role Blueprint A node that is not
connected with an edge

Multiple purpose task Tasks with too many output
work products

Task Blueprint Nodes that are more than
one standard wider than
the mean

Demanded
work products

Work products required for
too many tasks

Work Product Blueprint Nodes more than one
standard deviation higher
than the mean

Independent
subprojects

Independent
subgraphs

Task Blueprint or Work
Product Blueprint

Subgraphs that are not
connected with edges

2
 AVISPA (Analysis and Visualization for Software Process Assessment):

http://www.moosetechnology.org/tools/ProcessModel. AVISPA is freely available under the MIT license.

Session I: Management of the failure correction process

Figure 2: Identifying work products that are too demanded

3.2 Localizing Waste in Work Product Blueprints

Deliverables are those work products that need to be delivered to the customer as part of the final
product. For example, a user requirements document and the source code are typical deliverable work
products. In SPEM 2.0, some work products can be defined as deliverables so they could be easily
identified.

As part of the software development process, not only deliverable work products are produced. There
are other intermediate work products that are needed mainly for coordinating successive tasks proba-
bly performed by different people. For example, the test set is an output work product of the Design
Test Set task and an input of the Execute Test Set task, but it is not necessarily a deliverable work
product. However, if there are work products that are neither deliverables nor input for any other task
within the process, they are a kind of waste we do not want to develop if we intend to have a lean
process.

In the Work Product Blueprint, an arc connecting nodes represents precedence between work prod-
ucts. If there is a WPa that precedes WPb in the graph, that means that there is a task such that WPa is
its input and WPb is its output. In this way, all leaves in the graph, i.e., nodes with no successor,
should represent deliverable work products. In this paper AVISPA is extended so that it highlights in
blue all those leaves that are not defined as deliverables. The process engineer then needs to analyze
all highlighted nodes so that he/she could determine if each of the highlighted work products is actu-
ally required as an input of another task, and thus it is not a leaf, if it should have been defined as a
deliverable and thus it should not have been highlighted, or if it is actually waste in the process and it
is an improvement opportunity.

4 Application to Two Diverse Processes

In this section we apply the extended AVISPA for localizing waste in two software development proc-
esses. We apply our tool in two dramatically different scenarios. First we focus on the publicly avail-
able Scrum process model specification that can be found at the EPF Community web site

3
. A priori,

Scrum, being an agile method, is expected to show no waste in its specification. Then we will proceed
to analyze the software development process of a Chilean medium size software company. In this
latter case we will see that looking for waste in real world software processes is not only much harder,

3
 Scrum: http://www.eclipse.org/epf/downloads/scrum/scrum downloads.php

Session I: Management of the failure correction process

but much more useful when identified provided that the size and complexity of the process model
makes it almost impossible to analyze it manually.

4.1 Scrum

Scrum is an agile process used to rapidly develop software. It has been defined by Jeff Sutherland
and more formally elaborated by Ken Schwaber [17] . Scrum stresses management values and prac-
tices, and it does not include practices for technical parts (requirements, design, and implementation);
this is why it is usually used in combination with another agile method such as Extreme Programming.

The application of Scrum enforces a few simple rules that have the potential to make a team self-
organize into a process that can achieve 5 to 10 times the productivity of a waterfall-based process.
However, most Scrum teams never achieve this goal [18] . According to Sutherland, teams face diffi-
culties to organize work in order to deliver working software at the end of each sprint. Moreover, they
also experience trouble working with a Product Owner to get the backlog in a ready state before bring-
ing it into a sprint. Also, organizing into a hyper-productive state during a sprint remains a challenging
issue. Our findings analyzing the Scrum process model with AVISPA [5] are consistent with these
ideas.

We claim that it may be the case that the publicly available Scrum process model may be misspeci-
fied, and thus people adopting it as it is may be using an inherently suboptimal process. We apply the
extended AVISPA to the EPF community Scrum process model in order to look for waste and/or the
other kinds of misspecification detailed in Section 2, from the point of view of the work products. Fig-
ure 3 shows the results.

The Potentially Shippable Product Increment (A) has been highlighted. This work product needs to be
an input to the integration task, but the public Scrum process model does not specify this fact, so (A) is
an underspecification. The Release Burndown Chart (B) and Sprint Burndown Chart (C) are clearly
necessary for executing the development tasks, but the model does not specify these dependencies
either. They are also underspecifications. Therefore, the extended AVISPA is able to identify this kind
of underspecifications even in a very small software process. But also from this analysis, we can see
that no false positives are identified: all highlighted elements correspond to errors in the process
model specification. Moreover, analyzing each highlighted element, we can confirm that there is no
waste of the kind useless work product in the Scrum process model, as expected for an agile method.

Figure 3: Work products that are potential waste in Scrum

Session I: Management of the failure correction process

4.2 Development Process of a Software Development Company

DTS is a Chilean software company that works in solutions for military and civil technology. It has
around 250 employees, including engineers, certified technicians, operation workers and managers.
Particularly, the Self-Service Systems Engineering Area in DTS (SSSEA-DTS) started to define its
software process model in 2008, using the Rational Unified Process as a reference. In SSSEA-DTS
software process improvement has been oriented toward recovering the software process currently
applied in the organization, in order to formalize it, analyze it, and improve it if found necessary.
SSSEA-DTS’s process model is composed by 66 work products, 9 roles and 57 tasks. This model has
been defined with a total effort of 0.5 person-months during 12 months.

Figure 4 shows the Work Product Blueprint in which blue nodes (dark colour on a black and white
printout) identify potential waste work products or underspecifications. The tool highlights 22 problem-
atic work products (33% of the whole), which include non-defined deliverables, underspecified task
inputs and useless work products, i.e., actual waste.

Figure 4: Work products that are potential waste in DTS

In order to validate our findings and assess the relevance of the waste work products, we confronted
our blueprint with the SSSEA-DTS process engineer. From the 22 highlighted work products found, 3
have been confirmed to be non specified deliverables, 16 underspecified task inputs, and 3 are indeed
waste work products.

In particular, these 3 work products correspond to evidence required for bureaucratic issues, i.e., evi-
dence about the approval of other work products. For example, the Requirements Approval work
product is the evidence of requirements acceptance by different stakeholders, with respect of the Re-
quirements work product. This evidence could have been registered in each respective work product
(for example as a field) instead of a new work product. But, according to the expert’s opinion, and
based on the implementation of software processes during the past five years, about 12 of the under-
specified work products could have also been integrated as part of other work products, reducing bu-
reaucratic work significantly. For example, activity specifications, operational state specifications,
communication protocol specifications, and requirements observations from stakeholders can be all
considered part of the system requirements work product, decreasing the effort to design, maintain,
control and configure work documents. As a summary, the practical effectiveness of the tool has been

Session I: Management of the failure correction process

confirmed with DTS by identifying 22 problematic work products: 13.6% percent of deliverables that
had not been identified, 31.9% underspecified tasks (where the work product should have been speci-
fied as a task input), 13.6% waste and 40.9% could be improved (refactoring and integration).

The actual findings not only allowed the process engineer in DTS to improve their software process
specification, but also allowed them to gain more confidence about the quality of their process.

5 Related Work

Software process improvement through the Lean Measurement (SPI-LEAM) method is proposed by
Petersen et al [14] . This method describes a way to implement lean principles through measurement
in order to initiate software process improvement. The method uses collected data from projects exe-
cuted to evaluate performance and quality aspects, particularly identifying causes of waste. Mujtaba et
al [11] propose a case study to identify waste in a software process by using value stream maps
(VSM). The empirical data is collected using document analysis, extraction of phase times from a re-
quirement tracking tool and interviews. It is used to construct a value stream map that shows the pre-
sent state of the process. Static validation showed that the VSM methodology is useful for identifying
waste and to propose measures to avoid it. Middleton et al. [9] developed a study case where a com-
pany is followed using lean practices for two years. One of their most relevant findings was that the
company had many non-value tasks. Data collected at the company showed an increment of 25% in
productivity, schedule delay was reduced to 4 weeks from several months or years, and the time for
defect fixing was reduced by 65% - 80%. In our approach, the waste error pattern is applied on the
software development model, allowing part of the waste to be identified before the process model is
actually enacted, whereas the previous approaches are based on data collected from the process
applied in specific projects. So, the waste error pattern could be complementarily used with SPI-LEAM
or VSM methodologies before a new process model is tested, as a form of static verification mecha-
nism.

Visualization is regularly employed to identify deficiencies and errors in application source code. Po-
lymetric views is a lightweight visualization representation, originally designed to analyze software
source code. Polymetric views were first employed for reverse engineering [8] , code comprehension
[1] and characterization purposes [2] . Even though the application range of polymetric views has
greatly expanded over the last few years [3] [10] , all these views make use of pattern recognition to
visually identify abnormal situations. The blueprints and error patterns applied in this paper are no
exceptions. However, as far as we are aware of, our work is the first usage of polymetric views to
identify anomalies in software processes.

Knab et al. [7] proposed a set of generic visual process patterns. With these patterns, the authors
analyze effort estimation, length, and sequences of problem resolution activities. Based on the infor-
mation obtained from issue tracking databases, the visual representation of a problem is classified as
overestimated, underestimated and perfectly estimated. Our blueprints have a focus different from
effort estimation. Instead of estimating the result of an effort already realized, we provide an indication
and recommendation about how to prevent waste.

6 Conclusions

We have proposed an extension to AVISPA so that it is able to localize potential waste in software
process models specified with EPF. We focus on the kind of waste represented by work products that
are developed although they are neither necessary nor useful. These elements are all those leaves in
a Work Product Blueprint that are not marked as deliverables. However, we have found that most
elements that satisfy these conditions are due to incompleteness in the specification: they are either
deliverables that are not defined as so, or they are not leaves because they should have been speci-
fied as input of a task within the process. In both cases colored elements highlight errors in the proc-
ess specification, and thus they are also improvement opportunities.

Our method has proved to be effective in both scenarios applied and presented in the paper. In the
case of Scrum, we corroborated that the process model has no waste in the form of useless work

Session I: Management of the failure correction process

products as expected from an agile method, but it was still useful for identifying misspecifications in
the publicly available process model. In the case of the process of the medium size software com-
pany, the tool resulted highly useful for identifying all kinds of possible errors. In this case we were
able to identify actual waste. This fact has been validated with the process engineer at the company
and they agreed on the recommendations. They are currently in the process of restructuring their de-
velopment model taking our findings into account.

AVISPA, along with this new extension, is only able to identify as waste some work products when
they are not specified as deliverables and no task defines them as input either. However, we recog-
nize the existence of other kinds of waste that we are not yet taken into account. If a work product is
defined as an input for a task then it will be assumed as useful, even if the task does not use it at all.
This analysis is of finer grain and it would require the analysis of the definition of each task steps and
activities. This kind of waste cannot be automatically localized for processes specified using EPF
since tasks are the finer formal elements and their internal descriptions are only informal. However,
the possibility of identifying the existence of the waste pattern increases the power of the other prob-
lematic patterns. Specifically, the process model efficiency could be analyzed by identifying unneces-
sary work products (waste patterns) and bottleneck risks (demanded work products [5]). These issues
are part of our ongoing work in developing AVISPA.

Acknowledgments

The work of María Cecilia Bastarrica and Julio Ariel Hurtado Alegría has been partly funded by project
Fondef D09I1171 of Conicyt, Chile. The work of Julio Ariel Hurtado Alegría has been also partially
funded by NIC Chile.

Session I: Management of the failure correction process

7 Literature

[1] Stéphane Ducasse and Michele Lanza. The Class Blueprint: Visually Supporting the Understanding of

Classes. Transactions on Software Engineering (TSE), 31(1):75–90, January 2005.

[2] Tudor Gîrba and Michele Lanza. Visualizing and Characterizing the Evolution of Class Hierarchies. In

WOOR 2004 (5th ECOOP Workshop on Object-Oriented Reengineering), 2004.

[3] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo D’Hondt. Visually Supporting Source Code

Changes Integration: The Torch Dashboard. In Working Conference on Reverse Engineering, pages 55–

64, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[4] Julio A. Hurtado, María Cecilia Bastarrica, and Alexandre Bergel. Analyzing the Scrum Process Model

with AVISPA. In XXIX International Conference of the SCCC, pp. 60 – 65, Antofagasta, Chile, November

2010, IEEE Computer Society.

[5] Julio A. Hurtado, Maríıa Cecilia Bastarrica, and Alexandre Bergel. Analyzing Software Process Models

with AVISPA. Accepted for publication in the International Conference on Software and Systems

Processes, ICSSP’2011, Hawaii, USA, May 2011.

[6] Julio A. Hurtado, Alejandro Lagos, Alexandre Bergel, and María Cecilia Bastarrica. Software Process

Model Blueprints. In Münch et al. [12], pages 285–296.

[7] Patrick Knab, Martin Pinzger, and Harald C. Gall. Visual Patterns in Issue Tracking Data. In Münch et al.

[12], pages 222–233.

[8] Michele Lanza and Stéphane Ducasse. Polymetric Views—A Lightweight Visual Approach to Reverse

Engineering. Transactions on Software Engineering (TSE), 29(9):782–795, September 2003.

[9] Peter Middleton, Amy Flaxel, and Ammon Cookson. Lean Software Management Case Study:

Timberline Inc. In Proceedings of the 6th International Conference on Extreme Programming and Agile

Processes in Software Engineering, XP 2005, volume 3556 of LNCS, pages 1–9, Sheffield, UK, June

2005. Springer.

[10] Sébastien Mosser, Alexandre Bergel, and Mireille Blay-Fornarino. Visualizing and Assessing a

Compositional Approach of Business Process Design. In Proceedings of 9th International Conference on

Software Composition (SC’10), pages 90–105. LNCS Springer Verlag, July 2010.

[11] Shahid Mujtaba, Robert Feldt, and Kai Petersen. Waste and Lead Time Reduction in a Software Product

Customization Process with Value Stream Maps. In Proceedings of the 21st Australian Software

Engineering Conference, ASWEC’10, pages 139–148. IEEE Computer Society, 2010.

[12] Jürgen Münch, Ye Yang, and Wilhelm Schäfer, editors. New Modeling Concepts for Today’s Software

Processes, International Conference on Software Process, ICSP 2010, Paderborn, Germany, volume

6195 of LNCS. Springer, July 2010.

[13] OMG. Software Process Engineering Metamodel SPEM 2.0 OMG. Technical Report ptc/08-04-01,

Object Managemente Group, 2008.

[14] Kai Petersen and Claes Wohlin. Software Process Improvement through the Lean Measurement (SPI-

LEAM) Method. Journal of Systems and Software, 83:1275–1287, July 2010.

[15] Mary Poppendieck. Lean Software Development. In 29th International Conference on Software

Engineering, ICSE Companion Volume, pages 165–166, Minneapolis, MN, USA, May 2007, IEEE

Computer Society.

[16] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile Toolkit. Addison-

Wesley Professional, May 2003.

[17] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 1st edition, 2001.

[18] Jeff Sutherland, Scott Downey, and Bjorn Granvik. Shock Therapy: A Bootstrap for Hyper-Productive

Scrum. In Yael Dubinsky, Tore Dyb°a, Steve Adolph, and Ahmed Samy Sidky, editors, AGILE, pages

69–73. IEEE Computer Society, 2009.

Session I: Management of the failure correction process

8 Author CVs

María Cecilia Bastarrica
María Cecilia Bastarrica is an Assistant Professor at the Computer Science Department, at the
Universidad de Chile. She coordinates the MaTE group (Model and Transformation
Engineering) since 2007. She received her PhD. in Computer Science and Engineering from
the University of Connecticut in 2000, a Master of Science from the Pontificia Universidad
Católica de Chile in 1994, and a Bachelor in Engineering from the Catholic University of
Uruguay in 1991. Her main research topics are software engineering, software architecture,
model-driven engineering, and software product lines. Lately, her work has focused on
applying using MDE techniques formodeling software processes.

Julio Ariel Hurtado Alegría
Julio Ariel Hurtado is Asociated Professor at the Systems Department at the Universidad del
Cauca. He participates at the MaTE group (Model and Transformation Engineering) since
2007 and at the IDIS (Software Engineering Research) group since 2005. He received an
Electrical and Telecomunication Engineer degreee from Universidad del Cauca – Colombia in
1997. He is a PhD(c) in Computer Science from the Universidad de Chile. His main research
topics are software engineering, model-driven engineering, and software process lines. His
doctoral thesis focuses on applying MDE techniques and software process lines for modeling
software processes.

Alexandre Bergel
Alexandre Bergel is Assistant Professor at the University of Chile. He obtained his PhD in
2005 from the University of Berne, Switzerland, under the supervision of O. Nierstrasz and S.
Ducasse. After his PhD, A. Bergel made a first postdoc at Trinity College Dublin, Ireland, and
a second one at the Hasso-Plattner Institute, Germany. A. Bergel is the author of over 50
articles, and has intensively published in international and peer review scientific forums,
including the most competitive conferences and journals in the field of software engineering.
A. Bergel and his collaborators carry out research in diverse aspects of software engineering,
software quality, static and dynamic analysis.

