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Abstract. Code profilers are used to identify execution bottlenecks and
understand the cause of a slowdown. Execution sampling is a monitoring
technique commonly employed by code profilers because of its low impact
on execution. Nevertheless, regularly sampling the state of a program
under execution is highly sensitive to the executing environment, making
it non-deterministic and not comparable for cross-platform executions.
These factors are moreover exacerbated when profiling programs running
on a virtual machine.

‘We propose to count method invocations as a proxy for estimating exe-
cution time. Using principally the Pharo platform for experimentation,
we show that such a proxy is more accurate, more reliable over multiple
executions and profiles are comparable, even when obtained in different
execution contexts. We have produced Compteur, a new code profiler
that does not suffer from execution sampling limitations.

1 Introduction

Software execution profiling is an important activity to identify execution bottle-
necks. Most programming environments come with one or more powerful code
execution profilers.

Profiling the execution of a program is delicate and difficult. The main reason
is that introspecting the execution has a cost, itself hardly predictable. This
situation is commonly referred as the Heisenberg effect!. Profiling an application
is essentially a matter of compromise between accuracy of the obtained result
and the perturbation generated by the introspection.

Execution profiling is commonly achieved via different mechanisms, often
complementary: simulation [20], application instrumentation and periodically
sampling the execution, typically the method call stack. Sampling the execution is
favored by traditional code profilers since it has a low overhead and it is accurate
for a long application execution.

Profilers based on execution sampling assume that the number of samples
for a method is proportional to the time spent in the method. If samples were

1 “Observation that the very act of becoming a player changes the game being played.”,
http://www.businessdictionary.com/definition/Heisenberg-effect.html.
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obtained independently from the executing context (e.g., garbage collector, thread
scheduling) then execution sampling would be reliably and accurate.

Nevertheless, execution profiling is highly sensitive to garbage collection,
thread scheduling and characteristics of the virtual machine, making it non-
deterministic (e.g., the same execution profiled twice does not generally give two
identical profiles) and tied to the executing platforms (e.g., two profiles of the
same execution realized on two different virtual machines or operating systems
cannot be meaningfully related to other other).

Over the last decade there has been a whole range of new emerging object-
oriented programming languages that are syntactically simple, with a minimal
core, with few but strong principles. One of them is Pharo?. In Pharo, invoking
a method (also termed “sending a message”) is a syntactic construction in which
a computation can solely be expressed in terms of. Class and method creation,
loops, conditional branches are all realized via sending messages. Pharo is an open
source Smalltalk dialect. The results presented in this paper were obtained with
Pharo, we believe they equally apply to other “pure” object-oriented programming
languages however (e.g., Jython?, JRuby?*, Newspeak®, Groovy®).

This paper argues that counting method invocations has strong benefits over
execution sampling in Pharo. Since Pharo realizes a computation by almost
exclusively invoking methods, it is natural to evaluate whether counting method
invocations can be used as a proxy for estimating the application execution time.

The three research questions addressed in this paper are:

— A - Does the number of methods invoked during the execution of an expression
is related to the time taken for the expression to execute?

— B - Is the number of invoked methods more stable than the execution time
over multiple executions?

— C - Is the number of invoked methods as useful as the execution time to
identify an execution bottleneck?

This paper confirms these three questions after careful and extended mea-
surements in different execution settings. We show that counting the amount
of executed send bytecode instructions is an accurate proxy for estimating the
execution time of an application and an individual method.

Naturally, the execution time of a piece of code is not solely related to the
amount of invoked methods. Garbage collection, use of primitives offered by the
virtual machine, and native calls are likely to contribute to the execution time.
However, for all the applications we have considered in our experiments, these
factors represent a minor perturbation. The amount of method invocations is
highly correlated with execution time (correlation of 0.99 when considering the
application execution and 0.97 when considering individual methods).

The main innovations and contributions of this paper are summarized as
follows:

2 http://www.pharo-project.org
3 http://www.jython.org

4 http://jruby.codehaus.org

® http://newspeaklanguage.org
5 http://groovy.codehaus.org
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— the limitations of execution sampling are identified

— for a number of representative applications, we show that the number of
method invocations is correlated with the execution time, for each individual
method and each application

— we describe a general model for evaluating the stability and precision of
profiles over multiple executions

— we show empirically that the number of method invocations is a more stable
criterion for profiling applications than execution sampling

The paper is outlined as follows. The limitations of profiler based on execution
sampling are first presented (Section 2). We introduce counting the number of
method invocations as a reliable profiling criterion (Section 3). We then show the
ability of counting method invocations to identify execution bottlenecks (Section
4). Limitations of execution sampling are then reviewed against message counting
(Section 5). Subsequently, key implementation points are presented (Section 6).
Perspective and lessons learnt are given next (Section 7). We then review the
related work (Section 8) before concluding (Section 9).

2 Profiling based on Execution Sampling

Profiling is the recording and analysis of a program execution. Profiling is often
considered essential when one wants to obtain the representation of a program
execution. A profiler has to be carefully designed to provide a satisfactory balance
between the different tradeoffs associated with accuracy and overhead.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the collection of methods being
executed. Such a profiling technique is relatively accurate since it has little impact
on the overall execution. Almost all mainstream profilers (JProfiler”, YourKit®,
xprof [10], hprof®) use execution sampling. Although profilers have been part of
the standard software engineering toolset for decades, execution sampling comes
with a number of serious issues. As we will see, some of these issues were already
pointed out by other researchers but we have deliberately chosen to list them in
this section for sake of completeness and because we will address them in the
forthcoming sections.

This section is presented from the point of view of the Pharo programming
language.

Dependency on the executing environment. Sampling profiling is highly sensi-
tive to the executing environment. As one may expect, profiling while other
threads or OS processes are running is likely to consume resources including
CPU and memory which could invalidate the measurements. Most of operating
systems use the multilevel feedback queue algorithm to schedule threads [13].
The algorithm determines the nature of a process and gives preferences to short
job and input/output processes. The thread scheduling disciplines offered by

" http://www.ej-technologies.com
8 http://www.yourkit.com
9 http://java.sun.com/developer/technicalArticles/Programming/HPROF . html
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operating systems and/or virtual machines makes thread scheduling a source of
measurement perturbation that cannot reliably be predicted.

Execution sampling traditionally requires virtual machine support!'® or an
advanced reflective mechanism. In Pharo, execution sampling is realized via a
thread running at a high priority that regularly introspects the method call stack
of the thread that is running the application. Scheduling new threads or varying
the activity of existing threads (e.g., a refresh made by the user interface thread)
is a source of perturbation since a smaller time share is granted by the scheduler
to the profiled thread for the total profiled execution time.

Garbage collection is another significant source of perturbation since a memory
scan (necessary when scavenging unused objects) suspends the computation, and
thus augments the application execution time. Garbage collection occurs when
memory is in short supply and is hence not exactly correlated with any particular
execution sequence.

These problems are not Pharo specific. They are found in common execution
platforms, as mentioned by Mytkowicz et al. [18]. There are numerous other
source of measurement bias, for example the relation between the sampling
period and the period of thread scheduling [18] and to some extent the room
temperature since it affects the CPU clock speeds [17,5].

Non-determinism. Regularly sampling the execution of an application is so
sensitive to the executing environment that it makes the activity non-deterministic.
Profiling twice the very same piece of code does not produce exactly the same
profile. Consider the Pharo expression 30000 factorial. On an Apple MacBook Pro
2.26Ghz, evaluating this expression takes between 3 803 and 3 869 ms (ranges
obtained after 10 executions). The difference may be partially explained due to
the variation of the garbage collection activity. Computing the factorial of 30
000 triggers between 800 and 1000 incremental garbage collections in Pharo. The
point we are making is not about the implementation of the factorial function
that requires a garbage collector, but the variation in the memory activity an
arbitrary code evaluation may have.

A common way to reduce the proportion of random perturbations is to ensure
that the code to be profiled takes a long execution time. By doing so, the effect of
the garbage collector is minimized. Having long profiling period gains in accuracy,
however it makes code profiling an activity that may not be realized as often as
a programmer would like to do.

Lack of portability. Profiles based on execution sampling are hardly reusable
across different runtime execution platforms [4], virtual machines and CPUs. A
profile realized on a platform A cannot be easily related to a similar profile realized
on a platform B. For example, the first version of the Mondrian visualization
engine [16] was released in 2005 for Visualworks Smalltalk!!. In 2008 Mondrian
development has been moved to Pharo. Since its beginning Mondrian has been
constantly profiled to meet scalability and performance requirements. However,
because of (i) the language change from Visualworks to Pharo, (ii) the constant

10 ¢.g., http://download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.html
Y http://www.cincomsmalltalk.com/main/products/visualworks/
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evolution of Pharo and (iii) the continuously evolution of the physical machine
and the Pharo virtual machine, profiles cannot meaningfully be related to each
other.

Shared resources. In addition to the general issues mentioned above, a particular
profiler implementation comes with its own limitations.

Memory is a persistent global shared resource. Executions that were realized
before beginning the profiling may leave the memory in such a state that the
application is prone to an excessive garbage collection triggering. In Pharo, the
programming environment uses the same memory heap that is used to run
applications. Activities that are realized before a profile may impact this one.

MessageTally, the standard profiler of Pharo, constructs a profile sharing the
same memory space as the running application, which is a favorable condition
for the Heisenburg effect. The longer the application execution is, the more
objects are created by MessageTally to model the call graph and stock runtime
information, thus exercising additional pressure on the memory manager.

3 Counting Messages as a Proxy for Execution Time

Almost all the computation in Smalltalk, and thus in Pharo, is realized via sending
messages (“everything is an object”). Operations like conditional branching (if-
like statement), arithmetic, class creation, method creation are essentially realized
via sending messages.

Such a program execution platform suggests that CPU time consumption is
likely to be related to the number of sent messages.

3.1 Execution time and number of message sends

Determining whether the number of messages sent during the execution of an
expression is related to the time taken for the expression to execute is a bit trickier
than it appears. Execution time measurements are hardly predictable. As any
statistical measurement, a relation between the execution time and the number of
message sends is realized by bounding the error margin in the measurement. The
relation is established if this margin is “small enough”. Determining a relation
between two data sets requires a number of statistical tools [14]. We will follow
the traditional steps of constructing a regression model.

Intuitively, we expect the number of messages sent during the execution of
an expression to increase with an increase of the execution time: the longer an
expression takes to execute, the more messages are sent. We will later discuss about
native calls and other interactions with the operating system. This subsection
answers to the research question A.

Measurements. From the Pharo ecosystem'? we selected 16 Pharo applications.
We selected these applications based on their coverage of Pharo abilities. Ap-
pendix A lists the applications and gives the rationale why we have chosen them.

12 Principally available from the forge http://www.squeaksource.com
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The experiment conducted has been realized on a MacBook Pro 2.26 GHz Intel
Core 2 Duo with OSX 10.6.4 and 2Gb 1067 MHz DDR3 using the SqueakVM Host
64/32 Version 5.7b3 (this execution context is designated as ¢ in the following
sections).

Our measurements, used to relate the number of sent messages with the
execution time, have to be based on representative application executions to be
the closest to what programmers are facing. Running unit tests is convenient in
our setting since unit tests are likely to represent common usages and execution
scenarios [15]. We execute the unit tests associated to each of the 16 applications.
None of the test we used in this paper manipulate randomly generated data or
makes use of non-deterministic data input. The execution time and the number
of message sends are measured for each test suite execution. As an illustration of
the message send metric we are interested in, consider the following code (i.e., a
simplified version of a test, part of the Moose application test suite):

ModelTest>> testRootModel
self assert: MooseModel new mooselD > 0

Behavior>> new
~ self basicNew initialize

Behavior>> basicNew
<primitive: 70>

Object>> initialize
" self

MooseElement>> mooselD
~ mooselD

The test testRootModel sends 6 messages. The messages assert:, new, mooselD
and > are directly sent by testRootModel. The message new sends basicNew and
initialize. The total number of messages sent by testRootModel is 115. The message
assert:, which belongs to the SUnit framework, does some checks on the argument
and the method initialize is redefined in the class MooseElement.

The number of messages can easily skyrocket. Running the tests associated
to the Pharo collection library [8] takes slightly more than 32 seconds. The test
execution sends more than 334 million messages.

Linear regression. A scatter plot is drawn from our measurements (Figure 1).
Each of the applications we have profiled is represented by a point (execution
time, number of message sends) and is denoted with a cross in the scatter plot.
These values form an almost straight line with a statistical correlation of 0.99.
The correlation is a general statistical relationship between two random variables
and observed data values: a value of 1 means the data forms a perfect straight
line. This line, commonly called regression line, may be “deduced” from these
values.

The general equation of a regression line is § = a + bz where a the constant
term; b is the line slope; x is the independent variable; y is the dependent variable;
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Fig. 1. Linear regression for the 16 Pharo applications.

¢y the predicted value of y for a given value of z. The independent variable is the
execution time and the dependent variable is the number of message sends. We
also put an additional constraint on the constant term: an execution time of 0
means that no message has been sent.

Using the material provided in Appendix A, we estimate the sample regression
line to be § =9 335.55 z. The line is drawn in Figure 1.

The slope of the regression line is 9 335.55. This value corresponds to the
rate of message sends per millisecond for the applications that were run on our
machine. We designate the average message rate (number of message sends per
unit of time) as MR where I is the set of the applications we profile and ¢ the
context in which the experiment has been realized. ¢ captures all the variables
for which the measurements depends on (e.g., computer, RAM, method cache
implementation, temperature of the room).

We now have established the relation between the number of message sends
and the execution time. We are not done yet however: only an approximation
has been determined. The MR . value has been computed from an arbitrary set
of applications. If we would have chosen a different set of applications, say I,
MRp . would have probably be slightly different from MRr.. MRp . is said to
be a random variable, and it possesses a probability distribution. Assuming that
the applications we have chosen are representative of the all possible applications
available in Pharo, the real value of MRy ., where A is the set of all Pharo
applications, lives in an interval that can be easily calculated according to how
confident we want to be in our findings.

The standard deviation of error tells us how widely the errors are spread
around the regression line. This value is essential to estimate the confidence
interval that includes MRy .. Appendix A details how the standard deviations (s,
and sp) are computed. We have the standard deviation of error s, = 16 448 897.
The confidence interval is [MRr. — t sy; MR + t sp] where s, = 350.84 is
the standard deviation of MR . and t is a value obtained from the standard ¢
distribution table based on the confidence (1 — «)100% we want to have.

For a 95% confidence interval, we have o = 0.05 and therefore ¢ = 2.145
according to the standard t distribution, which may be found in any statistical



text book. As a result, the confidence interval is [8 582; 10 089], which means that
there is a probability of 95% that the real value MRy . is within the interval.

The linear regression model enables the prediction of the execution time from
the number of sent messages. Consider GitFS, an implementation of Git in Pharo.
The tests of GitFS emit 28 096 569 messages to run. According to the regression
model, this corresponds to a period of time (28 096 569—418 253)/9 335.55 = 2 965.
GitFS’ tests actually run in 2 928 milliseconds, which is included in the time
interval [2743; 3225].

3.2 Method invocation

This section compares the variation of the execution time with the number of
sent messages, which answers to the research question B.

Hash values. Before we further elaborate on the precision of message counting, it
is relevant to remark that executing multiple times the same code expression may
not always emit the same amount of method invocations. For example, adding an
element to a set does not always send the same amount of messages on evaluation.
Consider the following code excerpt:

I's|
s := Set new.
Compteur numberOfCallsin:
[ 1000 timesRepeat: [ s add: Object new | ]

Line 2 creates a new set. Line 3 invokes our library by sending the message
numberOfCallsin: which take a block as parameter (a block is equivalent to a
lambda expression in Scheme and Lisp and an inner class in Java). Line 4 creates
1000 entries in the set. The hash value of the key objects are used for the internal
indexing of the set. The virtual machine gives hash values and they cannot be
predicted since they are based on the hardware clock which is used as a pseudo
random number generator. Each execution of this piece of code gives a different
values (e.g., 54 383, 55 997, 56 165) since the computation needed to add an
object into a table depends on the object hash value pseudo-randomly provided
by the virtual machine.

Even though the way hash values are assigned to objects is indeed a source
of non-determinism, as we will subsequently see, it has a low impact on our
measurement: for the applications we have profiled the number of message
invocations varies significantly less than the execution time. Interactively acquiring
data from the user, the filesystem or the network may also be another source of
variation for the number of message sends.

Coefficient of variation. Each execution of the same piece of code results in a
different execution time and a different number of message sent. We will now assess
whether the number of sent messages is a more stable metric than the execution
time over multiple executions. For each of the 16 applications we executed 10 times
its tests and determined the standard deviation of execution time (s 7, Tuken)



and amount of sent messages (Smessages). To be able to compare these two
standard deviations, we use the coefficient of variation, defined as the ratio of the
standard deviation to the mean, resulting in ¢y, and cmessages, respectively.
Appendix A gives our measurement and details how the variation is computed.

For the 16 applications we considered, our result shows that the stability of
the execution time (the ¢y, column) varies significantly from one application
to another. For example, the applications ProfStef, Glamour and Magritte are
relatively constant in their execution time length. The variation may even be
below 1% for ProfStef. However, execution time significantly changes at each
run for a number of the applications. The execution time of XMLParser, DSM
and PetitParser varies from 25% to 46%. The execution time of PetitParser may
vary by 46% from one run to another. The reason for this is not completely clear.
After some private discussion with the author of PetitParser about the cause of
this variation, it seems to be caused by the intensive use of short methods on
streams. These short methods, such as peek to fetch one character from a stream
and next to move the stream position by one, have an execution time close to the
elementary operations performed by the virtual machine to lookup the method
cache.

On the opposite, message counting is a much more stable metric since its
variation is usually below 1%. The greatest variations we have measured are
with Mondrian and Moose. This is not surprising since these two applications
intensively use non-deterministic data structures like sets and dictionaries to
store their model.

The average value of ¢, and cmessages are 13.95 and 0.61, respectively.
For the experimentation set up we have used, we have found that over multiple
executions of the same piece of code measuring the number of sent messages is
22.86 (13.95 / 0.61) times more stable than measuring the execution time.

3.3 Effect of the execution context

We repeated the experiment on two different execution platforms: on the MacBook
Pro using the Cog virtual machine (which supports a Just-In-Time compilation
(JIT)) and a Linux Gentoo (2.6.34-gentoo-r6 running on an Intel Xeon CPU
3.06GHz Genuinelntel) using a non-jitted virtual machine.

On the Cog virtual machine we have MRy, = 58 384.75, with a 95%
confidence interval [55 325; 64 123]. On this platform, the ratio between ¢z,
and cmessages is 18.98. This is lower than what we obtained on the non-jitted
virtual machine. The reason stems from the multiple method compilations, each
being a resource consuming process on its own.

On the standard virtual machine running on Linux we obtained MRy . =
12 412.34, with a 95% confidence interval of [9 615; 14 121]. The ration between
Ctime a0d cmessages 1 22.34, which corresponds to the ratio we have measured
on the MacBook Pro machine.

3.4 Tracking optimizations

We identified a number of execution bottlenecks in the Mondrian visualization
engine in our previous work [3]. We removed the bottlenecks by adding a “memo-



ization” mechanism which is a common technique applied to methods free of side
effects to avoid unnecessary recalculations. Memoizing the method MOGraphEle-
ment>> bounds improved Mondrian performance by 43%. Another memoization
of MOGraphElement>> absoluteBounds resulted in a speedup of 45% (for the UI
thread this time). Comparing the amount of message sends with and without
the optimization gives performance increases of the same range: the amount of
messages sent with the bounds optimization is 42% less than the non-optimized
version and the it is about 44% for the absoluteBounds optimization.

3.5 Cost of counting method invocation

Counting the number of executed send bytecode instructions is cheap. We measure
the execution time of each of the 16 applications with and without the presence
of message counting. Appendix B reports our results. Each measurement is the
average of 5 executions. The overhead is computed as overhead = (time on
modified VM - time on normal VM) / time on normal VM * 100.

The cost of message counting is almost insignificant. The execution time
variation ranges from 0% to 0.02%. These results are not surprising actually.
Message counting is simple to implement within the virtual machine. At each send
bytecode a global variable is incremented. This is a cheap operation compared
to the complex machinery to lookup method, interpret bytecode and to manage
the memory. The execution time variation we have determined on a non-jitted
virtual machine is of the same range on Cog.

4 Counting Messages to Identify Execution Bottlenecks

CPU profilers aim at identifying methods that consume a large share of the
execution time. These methods are likely to be considered for improvement and
optimization, aiming at reducing the total program execution time. This section
considers counting message as a proxy to find runtime bottlenecks, which answer
to the research question C.

4.1 A method as an execution bottleneck

A method is commonly referred as an execution bottleneck when it is perceived
as taking a “lot of time”, or more time that it should. The intuition we will
elaborate on is that if a method is slow then it is likely to be the culprit of
sending (directly and indirectly) “too many” messages.

Sending “too many” messages may not be the only source of slow down. An
excessive use of the garbage collector and numerous invocations of the primitives
offered by the virtual machine are likely to play a role in the time taken for a
program to execute. A program that intensively uses files or the network may
spend a significant amount of time for executing the corresponding primitives.
In Pharo executing a primitive suspends the program execution and resumes it
once the primitive has completed. It is easy to consider a program that sends
few messages but makes a great use of primitives: the program can take a long
time to execute with a few of sent messages. However, as we will see in the
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coming sections, the perturbation that may be induced by primitive executions
still makes message counting more advantageous than execution sampling for all
the applications we have considered.

4.2 Method invocations per method

Counting the number of messages sent by a particular method is an essential
step to compare the execution sampling with the message counting profiling
techniques.

Ezample. Consider the following piece of code:

MOGraphElement>> addEdge: anEdge
anEdge target addincomingEdge: anEdge.
anEdge source addOutgoingEdge: anEdge.
self edges add: (anEdge setOwner: self)

The method addEdge: contains 7 message sends in its method body. Considering
the calls made by the method calls shown in bold, just invoking addEdge: send 89
messages in total. Not all of these messages target a method in Mondrian, the
application from which this code excerpt belongs to. The message edges returns
the collection of defined edges.

Principle. Counting the number of emitted messages for each method implies
to associate to each method the number of messages sent by the method and
to increase it at each invocation. Most code instrumentation library and tools,
including most aspect-oriented programming ones, easily realize this. The instru-
mentation we consider for each method of the application to be profiled is done
as follows:

CompteurMethod>> run: methodName with: listOfArguments in: receiver
| oldNumberOfCalls v |
oldNumberOfCalls := self getNumberOfCalls.
v := originalMethod valueWithReceiver: receiver arguments: listOfArguments.
numberOfCalls := (self getNumberOfCalls - oldNumberOfCalls) + numberOfCalls - 5.

v

Compteur is the implementation of our message-based code profiler for Pharo.
An instance of CompteurMethod is associated to each method of the application
to be profiled. At each method invocation, the method run:with:in: is executed to
increase the variable numberOfEmittedCalls defined in the CompteurMethod instance.
The number of times a particular method is executed is associated to this method.
Note that we do not instrument the whole system, but just the application we
are interested in finding execution bottleneck in. The method getNumberOfCalls
realizes a primitive operation defined in the virtual machine to obtain the current
number of message sends. It is defined as:

CompteurMethod>> getNumberOfCalls
<primitive: 556>

11



In Pharo, primitives may be identified with an integer. The primitive to
retrieve from the virtual machine the amount of code sent messages is identified
with 556. The instrumentation itself sends 5 messages: valueWithReceiver:arguments:,
withArgs:executeMethod: and the second getNumberOfCalls, plus 2 messages sent by
valueWithReceiver:arguments:, not presented here. We therefore need to subtract 5
to the number of calls.

4.3 Method execution time and number of message sends
The total execution time of an individual method is correlated with the number
of messages that are directly and indirectly sent by the method. In this section,

we focus on a single application, Mondrian. The result we have found equally
applies to other applications.

number of method
invocations

10000000

7500000

5000000

2500000

0 75 150 225 300
time (ms)

Fig. 2. Methods of Mondrian.

Figure 2 plots the methods of the Mondrian application according to their
execution time in milliseconds with the number of sent messages. Note that we
consider the total execution time and the total amount of message sends. This
means that if a method is invoked 100 times for which each execution takes 2 ms
and send 5 messages, then the method is plotted as the point (200,500). The
graph shows that sending a message is almost constant in time: an increase of the
amount of messages is related to a proportional increase of the method execution
time.

Similarly to when we studied applications execution (Section 3.1), the regres-
sion model indicates that the large majority of methods forms a straight line
(Figure 2), confirmed by a correlation of 0.97.

The equation of the regression line is § = 31 811.38 x. Figure 2 gives this
line. We see that the slope of the regression line is about 3.4 greater than the
slope we found when we studied application executions (Section 3.1). The reason

12



stems from the cumulative effect of recursive calls. To give a feeling of why this
happens, consider the following two methods:

MOGraphElement>> bounds
| basicBounds |
boundsCache ifNotNil: [ ~ boundsCache ].
self shapeBoundsAt: self shape ifPresent: [ :b |* boundsCache := b ].

MONode>> startPoint
~ self bounds bottomCenter

The method bounds sends 239 direct and indirect messages. The method
startPoint sends 2 direct calls. But since it invokes bounds and bottomCenter (which
sends 27 messages), in total, startPoint sends 2 + 27 + 239 = 268 messages. The
method startPoint cumulated the amount of messages recursively sent.

4.4 Precision of message counting

To assess the stability and accuracy of message counting over execution sampling
we will compare a list of profiles made with message counting and execution
sampling. The idea is to numerically assess the variability of the method ranking
against multiple profiles of the same code execution. We will then characterize a
stable set of profiles with a constant method ranking.

Stability of profiles. We have profiled Mondrian 20 times: 10 using execution
sampling and 10 using message counting. Each profile provides a ranking of the
methods executed when running the unit tests. For space preservation, Table 1
gives an excerpt of our measurements only: the first 9 methods (name have been
shortened into m1..m9) are ranked for 5 profiles. Methods are ranked against their
execution time. The method ranked first is the one that has the greatest share of
the CPU execution time. The method ranked last is the one that has consumed
the CPU the less. The 5 profiles are obtained with MessageTally. As stated earlier
(Section 2), due to the high and sensitive dependency on the running environment,
not all the methods are equally ranked. Quantifying the variation of the method
ranking for a set of profiles is the topic of this section.

For each method, we compute the standard deviation of the ranking (ses)
to estimate ranking variability. We have seg(m) = 0 if the method m is ranked
always the same along the profiles. The greater seg is, the greater the variability
of the ranking.

The stability of a set of profiles depends on the method ranking variability.
However, not all methods deserve to be considered the same way. We use the
discounted cumulated gain [11] to give a discount to weight the ranking. The
point of a discount is that the greater the ranked position of a method, the lesser
valuable it is for the user, because the less likely it is that the user will ever
consider the method as a bottleneck. A discounting function is needed which
progressively reduces the method score as its rank increases. We weight a method
ranked n as w(n) = 1/In (n + 1). We define the instability of the set of profiles
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ml | m2 | m3 | m4 | mb | m6 | m7 | m8 | m9
Profile 1 1 2 3 4 5 6 7 8 9
Profile 2 1 2 3 4 6 5 10 12 7
Profile 3 1 2 3 4 6 5 10 12 7
Profile 4 1 2 3 4 5 6 9 7 13
Profile 5 1 2 3 5 6 4 9 12 7
Average 1 2 3 41|54 | 55|89 104 8.2

Stand. Dev.
Ses 0.000|0.000|0.000|0.316|0.516|0.707|1.197|1.955|1.989

Table 1. Ranking of the first 9 methods of Mondrian for 5 profiles (execution
sampling).

Pas¢(P) =", ses(i) *w(n), the sum of the pondered deviations. According

to the excerpt given in Table 1, we have (P) = Om + .+ 0.316% +
0.516—— + ... + 1.989—~— = 3.177. A perfectly stable set of profiles P has

In(s+1) In(9+1)

the value (P) = 0.

Ezxperiment setting. We have profiled 20 times each application «y in the execution
context c. We have v € I', where I is the list of applications given in Appendix A.
10 of these profiles were obtained using the standard execution sampling. We
refer to these 10 profiles as P, .. The 10 remaining profiles were obtained using
message counting, referred as (),.. We have chosen to consider the same amount
of methods for each applications since not all the applications have the same
code size. We consider the first 100 ranked methods only. Taking the 100 ranked
methods looks reasonable, since it is unlikely that a programmer will go over that
amount of methods to find a bottleneck method. As previously, running the unit
tests produces the profiles. We obtained surprising results as described below.

Poor stability of execution sampling. The method ranking against the execution
time is not constant: each new profile gives a slightly different method ranking.
For example, for 8 of the 10 profiles of Ppeyiipgrser,.» the method ranked #5
that takes the greatest amount of time to execute is PPPredicateTest>> testHex.
However, in the 2 remaining profiles, this method is ranked 35 and 36 (!). After
an examination of the tests to make sure they do not randomly generate data,
we speculate that this punctual odd ranking is due to a mixture of the problems
phrased at the beginning of this article (Section 2). This kind of variability in the
method ranking is hardly avoidable, even though we took a great care of garbage
collecting the memory and releasing unwanted object references between each
profile.

The greatest instability of the set of profiles we obtained is for PetitParser.
We refer to this set of profiles as Ppg;1pgrser 0btained for the execution context
c. The instability of this set is ¥(Ppesitparser..) = 1468. About 3 times higher
than the average of ¥ for the remaining applications (they all vary between 500
and 600). PetitParser makes heavy uses of stream and string processing, which
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perturbs MessageTally, the standard execution sampling profiler of Pharo, for
the same reasons mentioned in Section 3.2 (use of short methods).

To give a reference point, we artificially build a random data set R on which
we can compare % of the applications we profile: we randomly generate 10
random rankings for 100 methods. The instability of the random method ranking
is ¢(R) = 852 (average obtained from 5 generations). The worse stability we
obtained is 1468 which means that MessageTally is less stable than random
method ordering when comparing the ranking of 100 methods for the weight
function we use. About 80% of our set of profiles are around 550 which is close
to a random method ranking limit.

Reducing the number of considered methods also reduce the variability of ).
We define 1'9(P, ) over the first 10 methods given by a set of profiles P. By only
considering the first 10 methods that consume the most resources, we intuitively
expect execution sampling to be more stable. For our random set of profiles, we
have ¢'%(R) = 173 and ¥'*(Ppetitparser,.) = 11. All the remaining ¢'* range
from 3 to 5. Execution profiling behaves equally well: we have ¢'%(P_.) = 0.

Perfect stability of message counting. The profiles obtained with message counting
has a 1 of 0 for each of the applications we have profiled. This means that the
10 profiles we made for each application does not show a variation in the method
ranking along the number of sent messages. Even though we have seen that the
number of method invocations slightly varies (Section 4.2), the data we collected
from this experiment shows that this does not impact the method ranking in all
our experiments. Profiling multiple times always identically ranks the methods.

Even for a small amount of considered methods, the stability execution
sampling does not equal the one of message counting. The stability of message
counting clearly outperforms execution sampling.

4.5 Cost of the instrumentation

Determining the amount of sent messages for each method requires a complete
instrumentation of the application to be profiled. This instrumentation induces an
overhead. The cost of the instrumentation closely depends on the infrastructure
used for code transformation. We have used the Spy framework [2]. To evaluate our
implementation, we have performed two set of measurements. For each application,
we run its associated unit tests twice, with and without the instrumentation.
Appendix C presents our results.

Running the unit tests while counting message sends for each method has an
overhead that ranges from 2% to 2524%. This overhead includes the time taken
to actually instrument and uninstrument the application. When the unit test
takes a short time to execute, then the instrumentation may have a high cost.
The worse cases are with XMLParser and AST. AST’s unit tests take 37 ms
to execute. It takes 971 ms with the instrumentation, representing an overhead
of 2 524%. The AST package is composed of 76 classes and 1 246 methods.
XMLParser’s unit tests take 36 ms to execute. The package is composed of 47
classes and 785 methods. Since XMLParser is smaller than AST, the overhead of
the instrumentation is also smaller.

15



Overhead (%) Overhead (%)

3000 10000
2250 1000
1500 100
750 10
0 1

0 10000 20000 30000 40000 0 10000 20000 30000 40000

Execution time (ms) Execution time (ms)

(a) Linear scale (b) Logarithmic scale

Fig. 3. Ratio between overhead and execution time.

The table given in Appendix C shows a general trend: the longer the unit
tests take to execute, the smaller the instrumentation overhead is. Figure 3
represents the ratio of the overhead with the test execution time. The left
hand-side presents this ratio with a linear scale. The right-hand side gives the
same graphic, with a logarithmic scale for the overhead. Each cross is a couple
(execution time, overhead), representing an application. Above an execution time
of approximately 5 seconds, determining the number of message sends per method
has an overhead of less than 100%, which represents twice the execution time of
the unit tests. In practice, this is acceptable in most of the situations we have
experienced.

DSM has an overhead of 2.4%, the smallest overhead we measured. The
reason for this low overhead is that most of the logic used by the DSM package
is actually implemented in Famix, a different package. When DSM is the only
package instrumented, the overhead is low since most of the work happens in a
different package, itself uninstrumented.

5 Properties

We revise the issues encountered with execution sampling that we previously
enumerated (Section 2) against the message counting technique described above.

No need of sampling. Message counting provides an exact measurement of a
particular execution. The measurement is solely obtained by counting the amount
of message sends. Message counting therefore does not depend on thread support
or advanced reflective facilities (e.g., MessageTally heavily relies on threads and
runtime call stack introspection) or sophisticated support of the virtual machine
(e.g., the JVM offers a large protocol for profiling agents). As described in Section
6, adapting a virtual machine to count send bytecode instructions may require a
few dozen lines of code for a non-jitted virtual machine.
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Ezxecuting environment. Message counting is not influenced by the thread schedul-
ing and memory management. A profile is determined by the amount of message
sends, a metric that is related but not dependent on the time. The benefit is
to be able to compare profiles obtained from different executing environments.
For the applications we have considered, sending messages is correlated with the
execution time. As we have shown, this means that the execution time can be
easily approximated from the number of messages.

Stable measurements. Measurements obtained from message counting are signifi-
cantly more stable than when obtained from execution sampling. Even though
the exact amount of message sends may vary over multiple executions (partly
due to the hash values given by the virtual machine), the metric is stable and
reproducible as long as the potential sources of execution indeterminism are
identified.

No need of long profiling time. Contrary to execution sampling, message counting
is well adapted for short profiles since an exact value is always returned. One
compeling application of this property is asserting execution time when writing
tests. We have produced an extension of unit test that offers a new kind of
assertion: assertls:fasterThan: to compare execution time.

We have written a number of tests that define time execution invariant. One
example for Mondrian is (the difference between the two executions is shown in
bold):

MondrianSpeed Test>> testLayout?2
| viewl view?2 |
" Collection and all its subclasses”
viewl := MOViewRenderer new.
viewl nodes: (Collection allSubclasses).
viewl edgesFrom: #superclass.
viewl treelayout.

"All the subclasses of Collection”

view2 := MOViewRenderer new.

view2 nodes: (Collection withAllSubclasses).
view2 edgesFrom: #superclass.

view2 treelayout.

self assertls: [ viewl root applyLayout ] fasterThan: [ view2 root applyLayout ]

The code above says that computing the layout of a tree of n nodes is faster
than with n 4+ 1 nodes. The difference between these two expressions is just the
message sent to Collection. Being able to write test on short execution time is
a nice application of message counting. As far as we are aware of, none of the
mainstream testing frameworks is able to define assertions to compare short
execution time.
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6 Implementation

COMPTEUR is an implementation of the message counting mechanism for Pharo.
It comprises a new virtual machine and a profiler based on the Spy profiling
framework [2].

Virtual machine. The modification made in the virtual machine is lightweight:
a global variable initialized to 0 is incremented each time a send bytecode is
interpreted. In the non-jitted Pharo virtual machine, the increment is realized in
the part of the bytecode dispatch switch dedicated to interpret message sending.
In the jitted Cog virtual machine, the preamble of the method translated in
machine code by the JIT compiler realizes the increment.

The maximum value of a small integer in Pharo is 0x3F FF FF FF (~1 073
M). Over this value, an integer is represented as an instance of the Largelnteger
class, which is slow to manipulate within the virtual machine. The current Pharo
virtual machine (5.7beta3) executes approximately 12 M message sends per
second on micro benchmarks'®. This means that the range of the Pharo integer
values may be exhausted after 90 seconds (1, 073 / 12).

Using a 64 bits integer is not an option since Pharo is designed to run on 32
bit machines. We therefore use two small integers to encode the number of sent
messages . The maximum amount of messages to be counted is ~ 1.152 % 10'8.
Even at full interpretation speed, this value is not reached after 2 millions of
hours, which is largely enough for the amount of profiling time we are considering.

The global message counter is made accessible within our profiler written in
Pharo via primitives. The counter is reset via a dedicated primitive.

Bytecode Instrumentation. To obtain the amount of message sends per method,
the application has to be instrumented to capture the value of the global counter
before and after executing the method, as explained in Section 4.2. Using the
Aspect-Oriented-Programming terminology [12], such instrumentation is easily
realized with an around or a before and an after advice.

7 Discussion

The design of our approach is the result of a careful consideration of different
points.

Modifying the virtual machine. Even though the modification we made in the
virtual machine is relatively lightweight, we are not particularly enthusiast about
producing a new virtual machine since it does not favor a large adoption among
the Pharo community. People are often reluctant from using non-standard tools,
even if the benefits are strong and apparent.

We have not found a satisfactory alternative. As an initial attempt before we
realize the work presented in this paper, we made a profiler that counts only the
messages sent by the application, and not by dependent libraries and the runtime.

13 Result of the standard 0 tinyBenchmarks micro benchmark.
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Only the application would be instrumented and the virtual machine would be
left unmodified. We discovered that the information we gathered were not enough
to demonstrate the properties presented in this paper. As soon as the execution
flow leaves the application, no information is recorded until it returns to the
application. Since it cannot be accurately predicted how long the execution flow
will spent outside the application, we could not establish a correlation between
the amount of messages solely sent by the application and execution time.

Instrumentation. Our approach requires an instrumentation of the application
to be profiled: only the methods defined in the application we wish to improve
its execution need to be instrumented.

Instrumenting the complete system has not proven to be particularly useful
or possible in our situation: (i) if an execution slowdown is experienced, there is
no need to look for its cause outside the application we are actually considering;
(ii) instrumenting the whole system has a significant runtime cost; (iii) this easily
leads to meta-circularity issues since our profiler shares the same runtime than
the profiled application. Even if recent advances in instrumentation scoping have
been proposed [19], this increases the complexity of the implementation without
a clear benefit. Efficiently handling metacircularity is necessary to profile the
profiler itself. However, since the implementation of COMPTEUR is not particularly
complex, we have not felt the need to do so.

Special messages. For optimization purpose, not all messages are sent in Pharo.
According to the name of the message being sent, the Pharo compiler may
decide to transform the message sent into a particular sequence of bytecode
instructions. Simple conditions are realized with the message ifTrue:ifFalse: and
two block arguments sent to a boolean. For example, the expression (1 < 2) ifTrue:
[ 'Everything is okay'] ifFalse: [ 'Something wrong’ ] is translated into the sequence:

76 pushConstant: 1

77 pushConstant: 2

B2 send: <

99 jumpFalse: 27

21 pushConstant: 'Everything is okay’
90 jumpTo: 28

20 pushConstant: 'Something wrong’
87 pop

78 returnSelf

According to the design of the Pharo virtual machine, a jump bytecode is
more efficient than a send. In the whole Pharo library, approximatively 62% of
all message sends contained in the source code are translated into send bytecode
instructions. The correlation we established between execution time and message
sends is strong, even if 38% of message sends are not translated into send bytecode
instructions.
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8 Related Work

The work presented in this paper is not the first attempt at finding an alternative
to execution sampling. We are however not aware of any work which studied the
amount of method invocations.

Bytecode instruction counting. Camesi et al. [4] pioneered the field by investigating
the use of bytecode instruction counting as an estimation of real CPU consumption.
For all the platforms they have considered, there is an application-specific ratio
of bytecode instructions per unit of CPU time. Such bytecode rate can be used
as a basis for translating a bytecode instruction value into the corresponding
CPU consumption.

We partly share some of their results. We indeed have identified a message
rate, however this rate is attached to a particular executing platform, and not to
an application.

Dynamic bytecode instrumentation. Instrumentation-based profile is known to
have a high overhead. However, such overhead are reduced by instrumenting
only the subset of the application, where a bottleneck is known to be for ex-
ample. Dmitriev [6] proposes that for a given set of arbitrary “root” methods,
instrumentation applies to the callsubgraph of the roots only.

Dmitriev observed that this approach generally works much better for large
applications, than for small benchmarks. The reason is that additional code and
data become negligible once the size of the profiled application goes above a
certain threshold. Message counting follows a similar idea. Only a subset of the
system needs to be instrumented. However, message counting behaves perfectly
well for small benchmarks.

Hardware Performance Counters. Most modern processors have complex mi-
croarchitectures that dynamically schedule instructions. These processors are
difficult to understand and model accurately. For that purpose, they provide
hardware performance counters [1]. For example, Sun’s UltraSPARC processors
count events such as instruction executed, cycles executed and many more.

With message counting we exploit the same kind of information, but obtained
from what is being executed on the Pharo virtual machine.

9 Conclusion

A code profiler provides high-level snapshots of a program execution. Theses
snapshots are often considered as the only support to effectively identify and
understand the cause of a slow execution. Whereas execution sampling is a widely
used technique among code profilers to monitor at a low cost, it brings its own
bag of limitations, including fragility against the execution environment, non-
determinism and inability to relates profiles obtained from different platforms.
We propose counting method invocations as a more advantageous profiling
criterion for the Pharo programming language. We have shown that having
method invocation as the exclusive computational unit in Pharo makes it possible
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to correlate message sending and execution time, both for application in a whole
and individual methods.

We believe that code profiling has not received the attention it deserves:
execution sampling uses stack frame identifiers, which essentially ignore the
nature of object-oriented programming. In their large majority, code profilers
profile object-oriented applications pretty much the same way that they would
profile applications written in C. We hope the work presented in this paper will
stimulate further research of the field to give more importance to objects than to
low implementation considerations.
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A Regression Linear Material

This section contains the relevant data and theoretical tools to conduct the
regression linear model described in Section 3.1 and Section 4.3.

Measurements. The following table lists 16 representative Pharo applications.
Each of these applications covers a particular aspect of the Pharo library and
runtime. Collections is an intensively used library to model collections. Mondrian,
Glamour and DSM make an intensive use of graphical primitives and algorithms.
Nile is a stream library based on Traits [7]. Moose is a software analysis platform
which deals with large models and files. Mondrian and Moose heavily employ
hash tables as internal representation of their models. SmallDude, PetitParser,
XMLParser heavily manipulate character strings. Magritte and Famix are meta-
models. ProfStef intensively makes use of reflection. Network uses primitive in
the virtual machine. ShoutTest and AST heavily parse and manipulate abstract
syntax trees. Arki is an extension of Moose which performs queries over large
models.

These applications cover the features of Pharo that are intensively used by
the Pharo communities: most of the applications are either part of the standard
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Pharo runtime or are among the 20 most downloaded applications. Not all the set
of primitives offered by the virtual machines are covered by the applications. For
example, none of them make use of sound. We are not aware of any application
that intensively use Pharo musical support.

For each of these applications, we report the time taken to run its corre-
sponding unit tests (time taken (ms)) and the amount of sent messages (#
sent messages). These reported results are obtained after 10 runs. For each
of these two measurements, we compute the standard deviation (not reported
here) and normalize it. We have cipme = S Time Taken * 100/ TimeTaken and
Cmessages = Smessages * 100/ messages. These applications were run on a virtual
machine modified to support our message counting mechanism.

Application|time taken|# sent messages Ctime|Cmessages
(ms) (%) (%)
Collections 32 317 334 359 691| 16.67 1.05
Mondrian 33 719 292 140 717| 5.54 1.44
Nile 29 264 236 817 521| 7.24 0.22
Moose 25 021 210 384 157| 24.56 2.47
SmallDude 13 942 150 301 007| 23.93 0.99
Glamour 10 216 94 604 363| 3.77 0.14
Magritte 2 485 37 979 149| 2.08 0.85
PetitParser 1 642 31 574 383| 46.99 0.52
Famix 1014 6 385 091| 18.30 0.06
DSM 4012 5 954 759| 25.71 0.17
ProfStef 247 3 381 429 0.77 0.10
Network 128 2 340 805 6.06 0.44
AST 37 677 439 1.26 0.46
XMLParser 36 675 205| 32.94 0.46
Arki 30 609 633 1.44 0.35
ShoutTests 19 282 313| 5.98 0.11
[Average \ \ | 13.95] 0.61

The source code of each of these applications is available online on the
SqueakSource Pharo forge.

Estimating the sample regression line. For sake of completeness and providing
easy-to-reproduce results, we provide the necessary statistical material. Comple-
mentary information may be easily obtained from standard statistical books [9].

For the least squares regression line §j = a+b x, we have the following formulas
for estimating a sample regression line:

_ S5y
a=y—bx

where i and T are the average of all y values and x values, respectively. The
y variable corresponds to the # sent messages column and = to time taken
(ms) in the table given above.



SSzy _ Z Ty — > I)(Z y)
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where n is number of samples (i.e., 16, the number of applications we have
profiled). SS stands for “sum of squares.”

The standard deviation of error for the sample data is obtained from:

> 58Syy—b SSay
Se = n—2

where SSy, = > y* — Zy)2

In the above formula, n — 2 represent the degrees of freedom for the regression
model.

Finally, the standard deviation of b is obtained with:

5 = /55..

B Cost of the Virtual Machine Modification

Application/Normal VM VM with overhead
(ms) |Compteur (ms) (%)
Collections 32 317 32 323 0.02
Mondrian 33 719 33 720 0
Nile 29 264 29 267 0.01
Moose 25 021 25 023 0.01
SmallDude 13 942 13 944 0.01
Glamour 10 216 10 218 0.02
Magritte 2 485 2 485 0
PetitParser 1 642 1 642 0
Famix 1014 1015 0.1
DSM 4012 4013 0.02
ProfStef 247 247 0
Network 128 128 0
AST 37 38 2.7
XMLParser 36 36 0
Arki 30 30 0
ShoutTests 19 19 0
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C Cost of the Application Instrumentation

[Application|No inst (ms)[Inst. (ms)|overhead (%)

Collections 32317 33590 3.94
Mondrian 33719 36983 9.68
Nile 29264 36387 24.34
Moose 25021 26652 6.52
SmallDude 13942 24467 75.49
Glamour 10216 12976 27.02
Magritte 2485 4361 75.51
PetitParser 1642 2102 28.01
Famix 1014 3327 228.07
DSM 4012 4108 2.40
ProfStef 247 562 127.47
Network 128 875 583.87
AST 37 971 2524.00
XMLParser 36 559 1452.78
Arki 30 236 685.71
ShoutTests 19 40 111.76
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