
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–28
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Execution profiling blueprints

Alexandre Bergel1, Felipe Bañados1, Romain Robbes1, Walter Binder2

1Pleiad Lab, Computer Science Department (DCC), University of Chile, Santiago, Chile

http://bergel.eu
http://www.dcc.uchile.cl/˜fbanados
http://www.dcc.uchile.cl/˜rrobbes

2University of Lugano, Switzerland

http://www.inf.usi.ch/faculty/binder

SUMMARY

While traditional approaches to code profiling help locate performance bottlenecks, they offer only limited
support for removing these bottlenecks. The main reason is the lack of detailed visual runtime information
to identify and eliminate computation redundancy. We provide three profiling blueprints which help identify
and remove performance bottlenecks. The structural distribution blueprint graphically represents the CPU
consumption share for each method and class of an application. The behavioral distribution blueprint
depicts the distribution of CPU consumption along method invocations, and hints at method candidates
for caching optimizations. The behavioral evolution blueprint compares profiles of different versions of a
software system and highlights performance-critical changes in the system. These three blueprints helped
us to significantly optimize Mondrian, an open source visualization engine. Our implementation is freely
available for the Pharo development environment and has been evaluated in a number of different scenarios.
Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Profiling; Visualization; Pharo

1. INTRODUCTION

Improving system performance is a permanent focus in research and in industrial software
development. While the applicability of static program analysis to identify performance bottlenecks
and hotspots is limited, particularly for software written in dynamic object-oriented languages,
dynamic program analysis allows gathering detailed execution statistics for individual program
executions. Profiling techniques are widely used for collecting dynamic metrics in order to locate
hotspots that are the target for subsequent program optimizations.

However, whereas the profiles produced by many prevailing profilers offer detailed execution
time statistics for individual methods, they often fail to explain the reason why a certain method
is slow, e.g., which particular method arguments cause an expensive computation. For instance,
gprof, which appeared in 1982, offers a number of textual reports focused on “how much time
was spent executing directly in each function” and on call graphs∗. Almost 30 years later, it is
interesting to notice that this output has not evolved much. Consider JProfiler, a award winning
profiler for Java which is actively developed. JProfiler essentially produces the same output,
using a graphical rendering instead of a textual one†. Whereas JProfiler uses tremendously more

∗http://sourceware.org/binutils/docs/gprof/Output.html#Output
†http://www.ej-technologies.com/products/jprofiler/screenshots.html

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

http://bergel.eu
http://www.dcc.uchile.cl/~fbanados
http://www.dcc.uchile.cl/~rrobbes
http://www.inf.usi.ch/faculty/binder
http://sourceware.org/binutils/docs/gprof/Output.html#Output
http://www.ej-technologies.com/products/jprofiler/screenshots.html

2 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

sophisticated profiling techniques than its predecessors, it still considers the output of its profiling
activity as a mere tree widget to indicate the CPU consumption. It appears that a large part of the
research conducted in the field of code profiling focuses on reducing the overhead triggered by the
code instrumentation and observation [1, 2].

The set of dynamic metrics and visualizations used to profile object-oriented applications are very
similar to those used to profile procedural applications. When we retrospectively look at the history
of execution profilers, we see that tool usability and profiling overhead reduction have steadily
improved, but the offered visualizations have not changed much. Prevailing profile visualizations
do not properly address the specific structure of object-oriented software. Dynamic metrics are
presented in a similar form when profiling an application written in Java or in C. In both cases, the
call frame is the main element of the generated profiles.

Tracing application performance across different versions of an evolving application is another
weak point in prevailing execution profilers. Profiles are usually gathered for a given snapshot of a
program. Questions like “Which method of a particular software version is faster than in the current
version?” can hardly be answered with current profilers, without resorting to manual screening
and differentiation of the profiles. Most profilers do not offer any dedicated support for comparing
profiles (e.g., hprof‡, JProbe§).

In this article we apply some visualizations that have been previously used in static software
analysis in order to display dynamic metric for profiling purposes. We describe visualizations for
rendering dynamic information that effectively enables comparison of different metrics related to
a program execution. Structural distribution blueprint and behavioral distribution blueprint are
two visualizations intended to identify bottlenecks and to give hints on how to remove them. The
first blueprint represents the distribution of the CPU effort along the program structure. The second
blueprint directs the distribution along method invocations and identifies methods prone to one class
of optimization, namely caching.

This article builds on our previously published work on blueprint profiling [3]. Since then, we
have constantly used our blueprints to address performance issues in our software development
activities. Our experience made us realize that exploiting the history of a software plays an important
role in understanding performance of a particular software version. Identifying where the speedup
gained from a particular optimization in the past got lost in subsequent software versions requires
considering the evolution of the source code. We address this issue with the new behavioral
evolution blueprint, which is the original scientific contribution of this article.

The work presented in this article aims at complementing existing profilers with new
visualizations that help specific optimization tasks. We obtained the results presented in this article
using Pharo¶, an open-source Smalltalk-dialect programming language. We apply our profiling
techniques to the visualization framework Mondrian‖ [4], our running example.

Intuitively the blueprint profiling techniques presented in this article may be applied to
applications written in any other object-oriented programming language as well. However, the
strategy we used to draw our conclusion is characterized as idiographic [5], meaning that we
focus only on the phenomenon in the context of Pharo and the applications in which we found
performance issues. The points we fix in our work are Pharo, its scheduling strategy and the size
of the applications we considered for our experiment (topping at 200 classes and 2000 methods).
Even though profiling long living applications, including large scale servers, is indeed a major
challenge [6], our work focuses on medium-sized applications (∼ 20 000 lines of code) with rather
short profiling execution time (less than 1 minute).

The profiler providing the visualizations presented in this article is publicly available in Pharo∗∗

under the MIT license.

‡http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
§http://www.quest.com/jprobe
¶http://www.pharo-project.org/home
‖http://www.moosetechnology.org/tools/mondrian
∗∗http://www.squeaksource.com/Spy.html

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://www.quest.com/jprobe
http://www.pharo-project.org/home
http://www.moosetechnology.org/tools/mondrian
http://www.squeaksource.com/Spy.html

EXECUTION PROFILING BLUEPRINTS 3

width property

height
property

color
property

edge width and
color properties

X property

Y
property

Figure 1. Principle of polymetric view.

Note that the structural distribution blueprint is made of gray and black only. The behavioral
distribution blueprint and behavioral evolution blueprint uses colors.

This article is structured as follows: We first describe the structural and behavioral distribution
blueprints (Section 2). We then identify and implement opportunities for optimization in Mondrian
(Section 3). Section 2 and Section 3 are taken from our previous publication [3]. Next, we
investigate factors impacting the performance evolution of two systems, Mondrian and GitFS,
along their development history (Section 4) and discuss the experience we gained (Section 5); this
part constitutes the novel contribution of this article. We then review related work (Section 6) and
conclude (Section 7).

2. PROFILING BLUEPRINTS

2.1. Profiling blueprint in a nutshell

Time profiling blueprints are graphical representations meant to help programmers (i) assess the
time distribution and (ii) identify bottlenecks and give hints on how to remove them for a given
program execution. The essence of profiling blueprints is to enable a better comparison of elements
constituting the program structure and behavior. To render information, these blueprints use a graph
metaphor, composed of nodes and edges.

The size of a node hints at its importance in the execution. In the case that nodes represent
methods, a large node may say that the program execution spends “a lot of time” in this method.
The expression “a lot of time” is then quantified by visually comparing the height and/or the width
of the node against other nodes.

Color is used to either transmit a property (e.g., a yellow node represents a method that always
returns the same value) or a metric (e.g., a color gradient is mapped to the number of times a method
has been invoked).

We propose two blueprints that help identify opportunities for code optimization. They provide
hints to programmers to refactor their program along the following two principles: (i) make often-
used methods faster and (ii) call slow methods less often. The metrics we adopted in this article help
finding methods that are either unlikely to perform a side effect or return always the same result,
good candidates for simple caching optimizations.

2.2. Polymetric views

The blueprints we propose are graphically rendered as polymetric views [7]. A polymetric view is
a lightweight software visualization enriched with software metrics. It has been successfully used
to provide “software maps” intended to help software comprehension and visualization. Figure 1
depicts the general aspect of a polymetric view.

Given two-dimensional nodes representing entities, we can map up to 5 metrics on the node
characteristics: position (X and Y), size (width and height), and color:

• Position. The X and Y coordinates of the position of a node may reflect two measurements.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

4 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

Structural distribution blueprint
Scope full system execution time
Edge class inheritance (upper is superclass of below)
Layout tree layout for outer nodes and gridlayout for inner nodes

(inner nodes are ordered by increasing height)
Metric scale linear (except for node width, which is logarithmic)
Node outer node is a class, an inner node is a method
Inner node color Number of different receivers
Inner node height total execution time of a method
Inner node width number of executions (logarithmic scale)
Example Figure 2

Table I. Specification of the structural distribution blueprint.

• Size. The width and height of a node can render two measurements. We follow the intuitive
notion that the wider and the higher the node, the larger the associated metric.

• Color. The color interval between white and black may render one measurement. The
convention that is usually adopted [8] is that the higher the measurement, the darker the node.
Thus light gray represents a smaller measurement than dark gray.

Edges may also render properties along a number of dimensions (width, color, direction, etc.).
However, for the purpose of this work, all edges are identical.

2.3. Structural distribution blueprint

The execution of an object-oriented program yields a large amount of information [9] (e.g., number
of objects created at runtime, total execution time of a method). Unfortunately, all these dimensions
cannot be visually rendered in a meaningful fashion. The structural distribution blueprint displays a
selected number of metrics indicating the distribution of the execution time along the static structure
of a program (i.e., classes, methods and class hierarchy). Table I gives the specification of the
structural distribution blueprint. The blueprint renders a program in terms of classes, methods and
inheritance relations. Each method representation exhibits its corresponding CPU time profiling
information along three metrics:

• number of different receivers: amount of different object receivers the method has been
invoked on. Due to implementation limitations, this is at the moment a lower bound estimate.

• total execution time of a method: time for which a call frame corresponding to the method
is present on the stack at runtime. The precision depends on the underlining profiler used to
collect runtime information.

• number of executions: number of times the method has been executed, independently of the
object receiver.

Actual metric values, and additional information, are accessible through a contextual popup
window.

Example. Throughout this article, we use the graph visualization framework Mondrian as a
case study. The blueprints described in this article are also rendered using Mondrian. An
example of the structural distribution blueprint is given in Figure 2. Four classes are represented:
MOGraphElement, MOViewRenderer, MONode and MORoot. This figure is a small part of a bigger
picture obtained by evaluating the following code snippet, which renders a simple visualization of
100 nodes, each containing 100 nodes:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 5

legend for methods

(color)
#different
receiver

executions

execution
time

bounds

translateTo:

shapeBoundsAt:
ifPresent:

Figure 2. Example of a structural blueprint.

ProfilingPackageSpy
viewProfiling: [

| view |
view := MOViewRenderer new.
view nodes: (1 to: 100)

forEach: [:each | view nodes: (1 to: 100)].
view root applyLayout]

inPackage: ’Mondrian’

The code being profiled is indicated using a bold font in the example source code. The profiling
is realized from the perspective of one package, Mondrian in our case. MOGraphElement inherits
from MONode, MORoot from MOGraphElement, and MOViewRenderer from Object. Since Object
does not belong to Mondrian (but to the Kernel package), it is not rendered in the blueprint.

The height of a method node is proportional to the total execution time taken by the method
(e.g., 53% of the code execution is spent in the method #applyLayout and 38% in #bounds). The
width is proportional to the number of times the method has been executed. A logarithmic scale
is used. The method node color represents the number of different objects this method has been
executed on (more than 3 732). The scope of the blueprint is global, which means that the darkest
method corresponds to the method that has been executed on the greatest number of object receivers,
system-wide.

Moving the mouse over a method node pops up additional contextual information. In the example,
the contextual window says that the method #applyLayout defined in the class MOGraphElement
has been executed 10 100 times, and has been executed on more than 3 732 distinct receiver objects
(i.e., instances of MOGraphElement or one of its subclasses). It is also indicated that this method
returns always the same value for a given object receiver. While the blueprint emphasizes the three
metrics indicated above, the contextual information provides useful data when one wants to know
more about a particular method.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

6 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

Within a class, methods are ordered along their height. This helps quickly spot the amount of
costly methods. For example, it is clear that among MOGraphElement’s methods, 3 are dominating
with respect to execution time.

Interpretation. Classes represented in Figure 2 illustrate part of a scenario that totals 11 classes.
Among the 111 classes that define Mondrian, these 11 classes are the only classes involved in the
code snippet execution given above. Only classes that are covered by the execution, even partially,
are depicted in the blueprint.

MOGraphElement contains “many large and dark” methods. This indicates that this class is
central to the code snippet execution: these large and black methods consume a lot of CPU
time and are invoked on many different instances. Almost all of MOGraphElement’s methods are
executed a large number of times: in the visualization, they are quite wide compared to methods
in other classes. For most of them, this is not a problem because they are thin and horizontal:
even if these methods are executed many times, they do not consume CPU time. On the left of
#applyLayout stands the #bounds method. This method takes 38% of the CPU time and is invoked
70 201 times on more than 3 732 object receivers. The third costliest method on MOGraphElement,
#shapeBoundsAt:ifPresent: takes 33% of the CPU time. MONode contains a black and relatively
large method: MONode>>translateTo: consumes 22% of the total CPU time. The method has been
invoked 10 100 times on at least 3 732 receivers.

Comparing to MOGraphElement, we find that classes are not involved in the computation as
much. The representation of MOViewRenderer quickly says that its methods are invoked a few times
without consuming much CPU. Moreover, methods are white, which tells that they are invoked on
few instances only. The contextual information obtained by moving the mouse over the methods
reveals that these methods are executed on a unique receiver. This is not surprising since only one
instance of MOViewRenderer is created in the code example given above.

MORoot also does not seem to be the cause of a bottleneck at runtime. The few methods of
this class are not frequently executed since they are relatively narrow. MORoot also defines a
method #applyLayout. This method is the tall, thin and white method. The contextual information
reveals that this method is executed once and on one object only. It consumes 97% of the
execution time; this means that the CPU spent 97% of the time in the the method #applyLayout
or in one of the methods recursively called by #applyLayout. The method MORoot>>applyLayout
invokes MOGraphElement>>applyLayout on each of the nodes. The relation between these two
#applyLayout methods is indicated by a fly-by-highlighting (not represented in the picture) and the
behavioral distribution blueprint, described below.

All in all, a large piece of the total CPU time is distributed over four methods:
MONode>>translateTo: (24%), MOGraphElement>>bounds (32%), MOGraphElement>>shape-
BoundsAt:ifPresent: (33%), MOGraphElement>>applyLayout (53%). Note that at this stage, we
cannot say that the CPU time share of these three methods is the sum of their individual share. We
have 24 + 32 + 33 + 53 = 142. This indicates that some of these methods call each other since their
sum cannot exceed 100%.

2.4. Behavioral distribution blueprint

In a pure object-oriented setting, computation is essentially performed through message sending
between objects. The CPU time consumption is distributed along method executions. Assessing the
runtime distribution along method invocations complements the structural distribution described in
the previous section. To reflect this profiling along method invocations, we provide the behavioral
distribution blueprint. Table II gives the specification of the figure.

The goal of this blueprint is to assess runtime information alongside method call invocations. It
is intended to find optimization opportunities, which may be tackled with caching. In addition to
the metrics such as the number of calls and execution time, we also show whether a given method
returns constant values, and whether it is likely to perform a side effect or not. As shown later, this
information is helpful to identify a class of bottlenecks.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 7

Behavioral distribution blueprint
Scope all methods directly or indirectly invoked for a given

starting method
Edge method invocation (upper methods invoke lower ones)
Layout tree layout
Metric scale linear (except for node width)
Nodes methods
Node color gray: return always self; yellow: same return value per

object receiver; white: remaining methods
Node height total execution time
Node width number of executions (logarithmic scale)
Example Figure 3

Table II. Specification of the behavioral distribution blueprint.

Classes do not appear on this blueprint. Methods are represented by nodes and invocations by
directed edges. The blueprint uses the two metrics described in the previous blueprint for the width
and height of a method. In addition to the shape, node color indicates a property:

• the gray color indicates methods that return self, the default return value. When no return
value is specified in Pharo, the object receiver is returned. This corresponds to void methods
in a statically typed language. No result is expected from the method, strongly suggesting that
the method operates via side effects.

• the yellow color (which appears as light gray on a black and white printout) indicates methods
that are constant on their return value, this value being different from self.

• other methods are white.

As shown in the coming section, keeping track of the returned value in such a way is beneficial
in our experience setting. We will later on detail

A tree layout is used to order methods, with upper methods calling lower methods. We illustrates
this blueprint on the MOGraphElement>>bounds method that we previously saw, a candidate for
optimization.

Example. In the previous blueprint (Figure 2), right-clicking on the method MORoot>>applyLayout
opens a behavioral distribution blueprint for this method. The complete picture is given in Figure 3.
The picture has to be read top-down. Methods in this blueprint have the same dimensions as
in the behavioral blueprint. We recognize the tall and thin MORoot>>applyLayout at the top.
All methods in Figure 3 are therefore invoked directly or indirectly by MORoot >>applyLayout.
MORoot>>applyLayout invokes 3 methods, including MOGraphElement>>applyLayout (labelled
in the figure). MOGraphElement>>applyLayout calls MOAbstractLayout>>applyOn:, and both of
these are called by MORoot>>applyLayout.

Interpretation. As the first blueprint revealed, #bounds, #applyLayout, #shapeBound-
sAt:ifPresent:, #translateTo: are expensive in terms of CPU time consumption. The behavior
blueprint highlights this fact from a different point of view, along method invocations. In the
following we will optimize #bounds by identifying the reason of its high cost and provide a solution
to fix it. Our experience with Mondrian tells us that this method has a surprisingly high cost. Where
to start a refactoring among all potential candidates remains the programmer’s task. Our blueprint
only says “how it is” and not “how it should be”, however it is a rich source of indication of what’s
going on at runtime.

The return value of MOGraphElement>>bounds is constant over time, hence it is painted in
yellow. This method is involved in a rich invocation graph (presented in Figure 3). In general,

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

8 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

MOGraphElement>>
applyLayout

shapeBoundsAt:
ifPresent:

MONode>>
translateTo:

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2
m1

invokes
m2 and m3

m1 m3

MOAbstractLayout>>applyOn:

MORoot>>applyLayout

bounds

Figure 3. Example of a behavioral blueprint.

MOGraphElement>>
origin

shapeBoundsAt:ifPresent:
Called by #bounds

Calling #bounds

bounds

computeExtentHavingChildrenFor:

Figure 4. Detailed view of MOGraphElement>>bounds.

understanding the interaction of a single method is likely to be difficult when a complete call graph
is used. The contextual menu obtained by right-clicking on a method offers a filtered view on the
entity of interest.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 9

Figure 4 shows a detailed view of a behavioral blueprint, centered on MOGraphEle-
ment>>bounds. This method is at the center of the picture. Above are located the methods calling
#bounds. Below, the unique method that is called by #bounds. Among the 5 methods that call
#bounds, 3 always return the same value when executed. The method called by #bounds also
remains constant on its return value. Figure 4 renders #bounds and #shapeBoundsAt:ifPresent:
with the same width. It is therefore likely that these two methods are invoked the same number of
times. The contextual window indicates that each of these two methods is invoked 70 201 times. We
can deduce the following:

• #bounds belongs to several execution paths in which each method is constant on its return
value. This is indicated in the upper part of Figure 4.

• #bounds calls #shapeBoundsAt:ifPresent:, which is constant on return value.

• #bounds and #shapeBoundsAt:ifPresent: are invoked the same number of times.

The following section addresses this bottleneck by adding a cache in #bounds and unveils another
bottleneck in Mondrian.

3. OPTIMIZING MONDRIAN

The combination of the structural and behavioral blueprints helped us to identify a number
of bottlenecks in Mondrian. In this section, we address some of these bottlenecks by using
memoization††, i.e. we cache values to avoid redundant computations.

3.1. Bottleneck MOGraphElement>>bounds

As we saw earlier, the behavioral blueprint on the method MOGraphElement>>bounds reveals a
number of facts about the program’s execution. These facts are good hints that #bounds will benefit
from a caching mechanism since it always returns the same value and calls a method that is also
constant. We inspect its source code:

MOGraphElement>>bounds
”Answer the bounds of the receiver.”
| basicBounds |
self shapeBoundsAt: self shape ifPresent: [:b | ˆ b].

basicBounds := shape computeBoundsFor: self.
self shapeBoundsAt: self shape put: basicBounds.
ˆ basicBounds

The code source confirms that #shapeBoundsAt:ifPresent: is invoked once each time #bounds
is invoked. The method #shape is also invoked at each invocation of #bounds. The contextual
window obtained in the structural blueprint reveals that the return value of #shape is constant: It is
a simple variable accessor (“getter” method), so it is fast. #bounds calls #computeBoundsFor: and
#shapeBoundsAt:put: in addition to #shapeBoundsAt:ifPresent: and #shape. However, they do not
appear in Figure 3 and 4. This means that #bounds exits before reaching #computeBoundsFor:.
The block [:b | ˆb], which has the effect of exiting the method, is therefore always executed in the
considered example.

We first thought that the last three lines of #bounds may be removed since they are not executed
in our scenario. However, the large number of tests in Mondrian indicate that these lines are indeed
important in other scenarios, although not in our particular example.

We elected to upgrade #bounds with a simple cache mechanism. Differences with the original
version are indicated using a bold font. The class MOGraphElement is extended with a new instance

††http://www.tfeb.org/lisp/hax.html#MEMOIZE

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.tfeb.org/lisp/hax.html#MEMOIZE

10 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

A

B

C

Upgrading
MOGraphElement>>bounds

Figure 5. Upgrading #bounds has a global structural impact.

variable, #boundsCache. In addition, the cache variable has to be reset in 5 methods related to
graphical bounds manipulation of nodes, such as translating and resizing.

MOGraphElement>>bounds
”Answer the bounds of the receiver.”
| basicBounds |
boundsCache ifNotNil: [ˆ boundsCache].
self shapeBoundsAt: self shape ifPresent: [:b | ˆ boundsCache := b].

basicBounds := shape computeBoundsFor: self.
self shapeBoundsAt: self shape put: basicBounds.
ˆ boundsCache := basicBounds

There is no risk of concurrent accesses of #boundsCache since this variable is set when the
layout is being computed. This occurs before the display of the visualization, which is done in a
different thread.

Result. Adding a statement boundsCache ifNotNil: [ˆ boundsCache] significantly reduces the
execution time of the code given in Section 2.3. Before adding this simple cache mechanism, the
code took 430 ms to execute (on a MacBook Pro, 2Gb of RAM (1067 MHz DDR3), 2.26 GHz
Intel Core 2 Duo, Squeak VM 4.2.1beta1U). With the cache, the same execution takes 242 ms only,
which represents a speedup of approximately 43%.

This gain is reflected on the overall distribution of the computational effort. Figure 5 provides
two structural blueprints of the code snippet given in Section 2.3. The comparison between the
two version is done “manually”, in Section 4 we will introduce a new visualization meant to
support such comparison systematically. The upper blueprint has been produced before upgrading
the method MOGraphElement>>bounds. Figure 2 is a part of it. The lower one has been produced
after upgrading #bounds as described above. Many places are impacted. We annotated the figure
with the most significant changes:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 11

B

A

Upgrading
MOGraphElement>>bounds

Figure 6. Upgrading #bounds has a global behavioral impact.

• the size of the #bounds method and the methods invoked by it (C) have seen their
height significantly reduced. Before the optimization, #bounds used 38% of the total CPU
consumption. After the optimization, its CPU use fell to 5%.

• the 5 methods denoted by the circle A and B have seen their height increased and their color
darkened. The height increase illustrates the augmentation in relative CPU consumption these
methods are subject to, now that #bounds has been improved.

The evolution of the behavioral blueprint is presented in Figure 6. We can clearly see the reduced
size of #bounds and #shapeBoundsAt:ifPresent: (Circle B) and the increase of the #applyLayout
method (Circle A).

3.2. Bottleneck in MONode>>displayOn:

We fixed an important bottleneck when computing bounds in Mondrian. We push our analysis of
bounds computing a step further. We inspect the User Interface (UI) thread of Mondrian. Most
applications with a graphical user interface run in at least 2 threads: one for the program logic and
another in charge of receiving user events (e.g., keystrokes, mouse events) and virtual machine/OS
events (e.g., window refreshes). Mondrian is no exception. The blueprints presented earlier focused
on profiling the application logic.

Step 1. Figure 7 shows the structural profiling of the UI thread for the Mondrian script given
in Section 2.3. The blueprint contains many large methods, indicating methods that received a
significant CPU share. Among these, our knowledge of Mondrian leads us to #absoluteBounds.
This method is very similar to #bounds that we previously saw. It returns the bounds of a
node using absolute coordinates (instead of relative). The UI thread spends most of the time in
MONode>>displayOn: since it is the root of the thread’s computation.

Figure 8 shows the behavioral blueprint opened on MONode>>displayOn:. The blueprint reveals
that #absoluteBounds and #absoluteBoundsFor: call each other. Return values of these two
methods are constant as indicated by their yellow color. They are therefore good candidates for
caching:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

12 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

legend for methods

(color)
#different
receiver

executions

execution
time

displayOn:

absoluteBounds

shapeBoundsAt:
ifPresent:

absoluteBoundsFor:

display:on:

Figure 7. Profiling of the UI thread in Mondrian.

MONode>>displayOn:

MOGraphElement>>
absoluteBoundsMOShape>>

absoluteBoundsFor:

MORectangleShape>>
display:on:

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2
m1

invokes
m2 and m3

m1 m3

Figure 8. Profiling of the UI thread in Mondrian.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 13

MOGraphElement>>absoluteBounds
”Answer the bounds in absolute terms (relative to the entire Canvas, not just the parent).”
absoluteBoundsCache ifNotNil: [ˆabsoluteBoundsCache].
ˆabsoluteBoundsCache := self shape absoluteBoundsFor: self

Result. Without the cache in #absoluteBounds, the scenario takes 356 ms to run. With the cache, it
takes 231 ms. We therefore gained 35% when displaying the visualization.

Step 2. By adding the cache in #absoluteBounds, we significantly reduced the cost of this
method. We can still do better. As shown in Figure 8, there is another caller of #absoluteBounds.
MORectangleShape>>display:on: is 85 lines long and begins with:

MORectangleShape>>display: aFigure on: aCanvas
| bounds borderWidthValue textExtent c textToDisplay font borderColorValue ... |
bounds := self absoluteBoundsFor: aFigure.
c := self fillColorFor: aFigure.
...

We saw in Step 1 that #absoluteBounds calls the expensive and uncached #absoluteBoundsFor:.
Replacing the call to #absoluteBoundsFor: by #absoluteBounds improves performance further:

MORectangleShape>>display: aFigure on: aCanvas
| bounds borderWidthValue textExtent c textToDisplay font borderColorValue ... |
bounds := aFigure absoluteBounds.
c := self fillColorFor: aFigure.
...

Result. The execution time of the code snippet has been reduced to 198 ms. A speedup of 14%
from Step 1, and of 45% overall.

Blueprint evolution. Figure 9 summarizes the two evolution steps described previously. Differences
with a previous step are denoted using a circle. The effect of caching #absoluteBounds considerably
diminished the execution time of this method. This is illustrated by Circle C. It has also the effect
of reducing the size of MOShape’s methods and increasing MORectangleShape>>display:on:. The
share of the CPU consumption increased for this method. Step 2 reduced the size of MOShape’s
method. Their execution times became so small, that they does not appear in the behavioral blueprint
(since we use a sampling-based profiler to obtain the runtime information, methods having less than
1% of the CPU do not appear in this blueprint).

3.3. Summary

The cache value of MOGraphElement>>bounds (Section 3.1) is implemented and has been finalized
in the version 341 of Mondrian‡‡. The improvement of #absoluteBounds and #display:on: may be
found in the version 352 of Mondrian. The complete experiment led to a 43% improvement in
creating the layout of a view, and of 45% in displaying the same view.

We identify and remove a number of bottlenecks. From this experience, it is tempting to
identify and look after some general patterns that would easily expose fixable execution bottleneck.
Unfortunately, we haven’t see the opportunity to deduce some general rules. The visualization we
provide clearly identify costly methods and classes, potentially being candidates for optimization.
Whether the optimization can be easily realized or not depends heavily on a wide range of
parameters (e.g., algorithm, architecture, data structure).

4. BEHAVIORAL EVOLUTION BLUEPRINT

We have presented profiling blueprints as a graphical representation of a software execution for a
particular version of the software. Although useful to identify execution bottlenecks, comparing two

‡‡The source code is available at: http://www.squeaksource.com/Mondrian.html

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.squeaksource.com/Mondrian.html

14 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

ca
ch

ed

ab
so
lu
te
Bo
un
ds

A
B

C

m
ak

e
di
sp
la
y:
on
:

ca
ll a
bs
ol
ut
eB
ou
nd
s

in
st

ea
d

of
 a
bs
ol
ut
eB
ou
nd
sF
or
:

D

A'

C'

B'

C'

Figure 9. Profiling of the UI thread in Mondrian.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 15

MORoot>>applyLayout

MOGraphElement>>translateBy:bounded:

Figure 10. Behavioral evolution blueprint for the version 416 and 425 of Mondrian.

or more versions becomes hard as it requires an exhaustive manual check for every software entity.
Focusing on the version differences instead of the actual values is the topic of this section.

To compare the profiles over two software versions, we propose the behavioral evolution
blueprint. This additional behavioral blueprint depicts the method call graph in which nodes are
methods, and edges invocations. The height of a node is the share of the total execution time taken
by the represented method. The width shows the number of times the method has been invoked,
based on a logarithmic scale. The differences between methods are usually so great that a linear
scale is not effective. Colors—or grayscale equivalents in this version—convey the difference of a
metric over different software versions, and border thickness refers to changes in the source code.
This blueprint can be used to graphically validate when a source change improves the performance
of the code. The specification of this visualization is given in Table III.

Figure 10 exemplifies the behavioral evolution blueprint on the method MORoot >>applyLayout
for two versions of Mondrian, versions 416 and 425. The profiling is realized on version 425, and
colors show the result of a comparison with a similar profiling based on a previous version, version
416 in this case. Each called method is colored like so:

• Green (light gray, thick borders in grayscale): the method source code has been modified from
the previous software version and its total execution time decreased.

• Light green (light gray, thin borders): the method’s source code is unchanged, but its total
execution time decreased.

• Yellow (black): the method was not present in the previous software version, but is present in
the current one.

• Red (dark gray, thick borders): the method source code has been modified and its total
execution time increased.

• Light red (dark gray, thin borders): the method is unchanged, but its execution time increased.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

16 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

Behavioral evolution blueprint
Scope all methods directly or indirectly invoked for a given

starting method
Edge method invocation (upper methods invoke lower ones)
Layout tree layout
Metric scale linear (except for node width)
Nodes methods
Node color Green (light gray in grayscale): method execution

time is less than previous version; Red (dark gray
in grayscale): method execution time is greater than
previous version; Yellow (block in grayscale): method
wasn’t implemented in previous version; White:
method execution time is identical.

Node height total execution time
Node width number of executions (logarithmic scale)
Node border thickness thin: source code identical; thick: source code is

different than previous version
Example Figure 10

Table III. Specification of the behavioral evolution blueprint.

• White: No change in execution time.

The red and light red colors quickly identify the methods that are slower in the profiled version
than they previously were. Green and light green colors identify methods that are faster in the
new version. However, the performance difference might not be directly related to the particular
method, as it might be a side effect of changes in other methods being called. Therefore, we need
to distinguish methods whose source code and performance has changed, which are the candidates
to cause the overall performance difference. The use of strong and light colors—complemented by
thick and thin borders—helps highlighting these particularly interesting methods. A strong color is
assigned when the source code is different from its previous version. Light colors mean the source
code is the same. In the case of yellow, as the method is not part of the call graph of the previous
version, there is no need for a light color property.

The depicted blueprint (Figure 10) is obtained from the following steps:

(i) profile a piece of code for Version 416 of Mondrian (we used the code snippet given in Section
2.3 for the figure), and store source code information for every method reached by the profile;

(ii) repeat step (i) for a second profile of the same code snippet for Version 425 of Mondrian;

(iii) for each method covered in Version 425, we subtract its total execution time with the metric
obtained when profiling version 416;

(iv) for every method in step (iii) we compare source code versions for changes.

(v) we generate the blueprint using the call graph obtained from the execution of the piece of
code in Version 425.

Only the methods that are defined in Version 425 are represented. Methods that are present in
Version 425 but not in Version 416 are indicated in yellow. Methods not present in 416 are simply
not represented.

As the source code of MORoot >>applyLayout does not change between both versions but its
performance in terms of execution time does, we want to use the Behavioral Evolution Blueprint in

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 17

Figure 10 to trace the origin of this change.

Searching for the origin of the change. The coloring in the blueprint is helpful to find the main
source of the change in performance. As seen in Figure 10, since the root node border is thin, the
source code of MORoot >>applyLayout is the same in Version 425 than in Version 416. However,
its execution time has changed, since it is colored in dark gray.

The first thick bordered node in the second branch of children of the original method corresponds
to the method MOGraphElement >>translateBy:bounded:. The version 425 of this method is slower
then the version 416 as the dark gray color indicates. The method name—along with the current
displayed version and metric values—is available in a contextual popup window when the mouse
hovers upon the method. Upon browsing the source code of the method, we see that the slowdown
is due to moving the call to #resetCacheInEdges above in the method:

translateBy: aPoint bounded: bounded
”It moves the element by aPoint.
If bounded is true and the owner is not the root,
then the bounds are limited by the owner bounds.
If the element is placed in the root, then the root’s bounds are updated”
|realStep newRelativePosition allShapes wasMyShapeUpdated |

self resetCacheInEdges. ”line present in Version 425, not in 416”

self shapeBounds isNil ifTrue: [ˆ self bounds].
self shapeBounds isEmpty ifTrue: [ˆ self bounds].
...
self allNodesDo: [:n |n translateAbsoluteCacheBy: aPoint].
self resetCacheInEdges. ”line present in Version 416, not in 425”
...

Revisiting the Mondrian optimizations. We used the behavioral evolution blueprint to compare
the performance of Mondrian before and after the cache implementation for the bottlenecks
discussed in Section 3.1 and Section 3.2. We can use the visualization to track the performance
improvements directly to the cache implementation changes. From a global overview we found
that the performance in MOEdge>>displayOn: improved by almost 20% between versions 300 and
352, while its source code did not change. As seen in Figure 11, that improvement is trackable
to an over 300% improvement in MOGraphElement>>absoluteBounds, which coincides with the
implementation of Section 3.2.

The optimization described in the previous sections are part of a major effort to optimize
Mondrian. This effort started after Version 200. To compare our optimizations, we use Version 200
as the referential. When compared with Version 352, we identify an optimization implemented
somewhere between Version 200 and 352: method MORoot>>applyLayout is faster in Version 352
and its source code has slightly changed (some methods have been renamed), changing from the
version on the left hand side to the one on the right hand side (bold font indicates differences):

self shapeBounds self shapeBoundsAt: self shape
at: self shape put: (0@0 corner: 0@0). put: (0@0 corner: 0@0).

self do: [:each | self do: [:each |
each applyLayout]. each applyLayout].

self layout applyOn: self. self layout applyOn: self.
self do: [:each | self nodesDo: [:each |

self bounds corner: self bounds corner:
(self bounds corner max: (self bounds corner max:

(each extent + each origin)). (each extent + each origin)).
].].

With the Behavioral Evolution Blueprint in Figure 12 only three methods remain candidates
to the source of the improvement. First, MOAbstractLayout >>initializeConnectionPositions, but
its execution time is too small to cause the global improvement. Second, MORectangleShape
>>computingExtentHavingChildrenFor and third MONode>>translateTo. The third method

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

18 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

Figure 11. Behavioral evolution blueprint of the UI thread over versions 300 and 352, rooted in
MOEdge>>displayOn:.

MONode>>translateTo:

MOGraphElement>>bounds

M
O
A
b
st
ra
ct
La
y
o
u
t>

>
e
xe
cu

te
O
n
G
ra
p
h

M
O
R
e
ct
a
n
g
le
S
h
a
p
e
>
>
co
m
p
u
te
E
x
te
n
tH
a
v
in
g
C
h
ild

re
n
Fo
r:

Figure 12. Behavioral Evolution Blueprint over versions 200 and 352 rooted in MORoot>>applyLayout.

decreases from 64 to 1ms. Its source code was changed to include memoization, hence calling
less times MOGraphElement>>bounds—a method that later added caching as seen in Section 3.2.
Comparing the profiling obtained with Version 353 against the one obtained with Version 200

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 19

retrospectively assess the performance of Mondrian after 7 months (Version 200 was released on
May 14, 2009 and Version 352 on January 25, 2010).

Navigating through history. The Behavioral Evolution Blueprint easily compares two execution
profiles, each profile supposedly obtained from a particular software version. The profile that is
compared with the anterior profile may be chosen by means of a contextual menu. This menu allows
for moving through the history in a frame-by-frame basis. Clicking the “next” comparison button
(not shown in the figures) for a particular method renders a new blueprint where the second profile
of the previous blueprint becomes the first, and is compared to the profile associated with the next
version available. A “previous” button is also available to navigate in the opposite direction. Note
that the analysis data for the previous versions are stored and reused. Navigating through the history
of the profile is therefore without noticeable lag.

In order to navigate the profiling history, we require a set of profiles taken over the execution
of a particular code snippet throughout several versions of a software system. After selecting a
particular set of versions where profiles are to be taken, we sort them from the oldest to the newest.
The set of profiles begins with the first version’s profile. Steps (ii) to (iv) are then repeated for each
subsequent version of the system, loading, profiling, and comparing it with the last available. The
profiling information is then stored in a similar approach to the one proposed in [10] for source
code history.

Experience on Mondrian. We applied the previous algorithm to obtain a behavioral evolution
blueprint analyzing the method MORoot >>applyLayout through a set of 22 versions, ranging from
400 to 570.

Navigation through the set of blueprints obtained made visible variations in the execution time
associated with the cache implementation. Between versions 450 and 460, the call of a method
MONode >>resetCacheInEdges in method MONode >>translateBy:bounded: was introduced as an
effort to homogenize the various cache mechanisms Mondrian provides. This new method produced
an increase of the execution time for MORoot >>applyLayout.

The time increase of MORoot >>applyLayout is, in contrast, reduced in Version 589 compared to
Version 510. This is caused by changes in the method MOGraphElement >>applyLayout. Version
589 of this method contains an extra initialization of the shape, which significantly reduce the cost
of layouting nodes:

MOGraphElement >>applyLayout
| b |
self resetMetricCachesResursively.
b := self hasChildren

ifTrue: [0 @ 0 extent: 0 @ 0]
ifFalse: [self shape computeBoundsFor: self].

self shapeBoundsAt: self shape put: b. ”Added in Version 589”
self hasChildren

ifTrue: [
self do: [:each | each applyLayout].
self layout applyOn: self].

Complementary case study. Beside Mondrian, we have used the behavioral evolution blueprint on
a number of different Pharo projects. For example, GitFS∗ is an implementation of Git in Pharo. At
the time this article is being written, 91 different versions of GitFS are published. Git is a distributed
revision control system with an emphasis on speed†. As a representative benchmark for a revision
control system, we measured a sequence of 500 commits made on a file present in memory (no
system primitives are therefore involved).

The method FSGitFilesystem>>commit: is responsible to commit a change into a new file. This
method is the entry point to realize a Git commit operation. For Version 70, our benchmark made

∗http://www.squeaksource.com/GitFS.html
†http://git-scm.com

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.squeaksource.com/GitFS.html
http://git-scm.com

20 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

FSGitFilesystem>>commit:

FSGitFilesystem>>basicCommit:to:

Figure 13. Behavioral evolution blueprint of Version 80 compared with Version 70 of GitFS.

the #commit: method takes 2 541 milliseconds to execute. For Version 80, #commit: took 4 255
milliseconds, which represents a slowdown of 67%‡.

Figure 13 visually represents the cause of the slowdown. The source code of #commit: hasn’t
changed from Version 70 to Version 80. However, #commit: invokes #basicCommit:to: and the
source code of this method has changed. It went from:

”Version 70” ”Version 80”
basicCommit: aMessage to: branchName basicCommit: aMessage to: branchName
| commit parents | | commit parents |
self assert: modManager hasModifications. modManager hasModifications ifFalse: [...].
modManager processBlobs. modManager processBlobs.
... ...
revision ifNotNil: [parents add: revision]. revision ifNotNil: [parents add:

(repository objectWithSignature:
revision signature)]

revision := commit. revision := repository
objectWithSignature: commit signature.

Of the two modifications, the addition of the signature when committing is responsible of the
slowdown. To confirm our findings, we contacted the author of GitFS to determine whether he
agreed on our findings; he answered positively. This additional example further illustrates the
efficiency of the behavioral evolution blueprint to track down the cause of a speedup or a slowdown.

Summary. Behavioral evolution blueprint is proposed as an effective and intuitive visualization
that complements Structural distribution blueprint and Behavioral distribution blueprint, two
visualizations of a unique profile snapshot. This third blueprint focuses on differencing profiles
of two or more snapshots. A visualization always differentiates two profiles of the same application

‡= (4255− 2541) ∗ 100/2541

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

EXECUTION PROFILING BLUEPRINTS 21

and benchmark, but for different software versions. Behavioral evolution blueprint helps tracking
down the cause of a performance increase or decrease.

The effectiveness of behavioral evolution blueprint depends on the structural difference between
the profiled version. Versions need to be “close enough” to give a useful meaning to the comparison.
This point is discussed further in the following section (Section 5).

5. DISCUSSION

We discuss crucial points about the design of our blueprints.

Profiler. Profiling blueprints were first implemented for KAI. KAI is a profiler for the Pharo
Smalltalk programming language. The graphical engine that renders profiling blueprint is not tied
to KAI and Pharo. Once serialization and deserialization of a profiling has been agreed upon, then
the blueprints may be generated for different profilers.

A number of requirements must be met by a profiler to produce profiling blueprints. First, it
has to compute for each methods a number of metrics: number of different receivers per method,
total execution time of a method and number of executions for each method (cf Section 2.3). Then,
whether their return value is constant over multiple invocations (Section 2.4).

Gathering these information is not free. KAI execute twice the application to profile. The first
time to gather using an execution sampling technique the call graph and the execution time for each
method, and the second time to compute the method properties. Without being optimized, KAI
produced satisfactory results for the situation in which it has been employed. The advances in the
field of bytecode instrumentations and aspect-oriented techniques§ are likely to be useful to reduce
the cost of profiling.

Transformation verification. The yellow color used in the behavioral blueprint indicates possible
locations for a memoization cache insertion. The cache is inserted by modifying the class definition,
the method to be optimized and adding a method for clearing the cache, if necessary. There is
no guaranty that such a transformation will not produce ripple effects, which may conduct the
application to a complete different behavior.

The right semantic of all our code transformations have been validated using an extended set
of unit tests. Before doing the transformation, we make sure that our tests are green. After the
transformation, tests must remain green. Using unit testing as a reference for the right application
behavior is not ideal since having a test coverage for all the execution is challenging [11]. However,
having a robust set of unit tests has many advantages that go well beyond the semantics preservation
of our code transformation.

Difficulty of profiling different version. A smooth integration of the Behavioral Evolution
Blueprint (Section 4) in the Pharo programming environment is obtained by performing all the
profiling on the same virtual machine. However, this has a number of drawback: Usage of sampling
profiling may produce different execution times when repeating a profile over the same source
code. As this problem is repeated over each version, comparing profiles gets more challenging.
This problem is not unique to our approach: Mytkowicz et al. have shown that state-of-the-practice
Java profilers such as xprof, hprof, jprofile and yourkit exhibit the same issues [12]. The usual
workaround is to repeat the sampling process several times, and average the results of these
executions. As future work, we are considering different metrics that could be used instead of time
execution, such as message counting, or bytecode counting [13, 14]; these measures may prove
more stable over different runs, compared to the time information obtained by sampling.

§http://www.eclipse.org/aspectj

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.eclipse.org/aspectj

22 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

Version 1.1 Version 1.41

MetacelloBrowser>>infos

MetacelloBrowser>>initialize

MetacelloBrowser>>
configurationSelection:

Figure 14. Comparing distant versions.

Comparing distant versions. Behavioral evolution blueprint highlights differences between
different profiles. This comparison makes sense only for profiles that are structurally comparable.
By structurally, we refer to the application static structure, in terms of classes and methods. To
illustrate this point, we obtained the evolution blueprint for the MetacelloBrowser application¶ with
3 different versions (0.0, 1.1 and 1.41). Version 0.0 is a version that does not define any method or
class. We use 0.0 as the extreme case for comparison.

Figure 14 shows that Version 1.41 defines the method #infos and 5 additional methods that are
directly and indirectly called by #infos. These 6 methods are new in 1.41 since they are painted in
yellow. In addition, 2 methods were redefined in 1.41 and are indirectly called by #infos (these are
the small red methods). The call graph of #infos is almost made of yellow nodes.

In Version 1.1, the call graph rooted in MetacelloBrowser>>initialize is entirely painted in yellow
since these methods do not exist in Version 0.0. In Version 1.41, #initialize is red, meaning that the
method is slower and its source code has changed. The method #configurationSelection: is present
in both versions. The cause of the slow behavior is due to the new version of #initialize.

The situation given in the figure clearly shows one limitation of the behavioral evolution blueprint.
It is ineffective when the versions to compare are structurally “very” different. Whereas one can still
refer to the cause of a slowdown in the evolution of the #initialize method, the call graph of #infos is
pretty useless to determine what is the cause of its high execution time (#infos takes about 62% of
the execution time).

From our personal experience, identifying what causes a slowdown in a call graph that has more
than 30% of new methods is difficult at best. Naturally, this phenomena is highly dependent on the
software analyzed. Note that the root method of the call graph has to be present in the previous
version. In practice, the cause of a slowdown is easier to find with a small structural difference only.

Keeping track of returned values. The optimizations we realized stem from keeping track of
values returned when invoking methods. The intuition that we exploited is that if a method always
return the same computed value, then it may be worth adding a memoization mechanism to avoid
redundancy. Our blueprint indicates such methods with the yellow color.

We analyzed the presence and relevance of these candidate methods. We took 5 representative
applications of the Pharo ecosystem. These applications are available from the Pharo SqueakSource
forge. For each of these applications, we run their associated unit tests and report our monitoring.
Unit tests often describes typical execution scenarios [15], it therefore looks reasonable to base our
analysis on the unit test execution.

¶http://metacellobrowser.dcc.uchile.cl

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://metacellobrowser.dcc.uchile.cl

EXECUTION PROFILING BLUEPRINTS 23

Application # total methods # constant methods
Mondrian 2098 39

Pier 3238 106
Grease 1046 12

Magritte 2056 66
XMLParser 1125 18

The first column gives the total mount of methods defined in the applications. The second column
gives the amount of constant methods that return a value other than the receiver itself. We filtered
out methods that are invoked less than 2 times and which perform less than 2 calls to avoid methods
that simply do a delegation or return a primitive value. The amount of constant methods in these
applications ranges from 1.1% and 3.2%.

We now focus on the case of Mondrian. We see that there are 39 constant methods that are
potential candidates for a memoization mechanism. Each of them has been manually reviewed.
We can classify each of these 39 methods along 3 sets: caching, lazy initialization and candidate
methods.

Caching. Keeping satisfactory performances in Mondrian is a major concern for its development.
Mondrian contains a number of sophisticated mechanisms to cache metric values. The method
#colorFor: and #computeColorFor: is a typical example:

MOLineShape>>colorFor: anElement
ˆanElement

cachedNamed: #cachecolorFor:
ifAbsentInitializeWith: [self computeColorFor: anElement]

MOLineShape>>computeColorFor: anElement
ˆcolor moValue: anElement model

Among the 39 methods, 3 groups of 2 methods follow the pattern #metricFor: and
#computeMetricFor:. These 6 methods are therefore false positive since they already implement a
memoization mechanism.

Lazy initialization. Delaying the object creation is often employed in Mondrian. The method
#fontCache and #default are representative:

MOBoundedShape>>fontCache
ˆfontCache ifNil: [fontCache := Dictionary new]

MONodeShape>>default
ˆDefault ifNil: [Default := MORectangleShape new]

11 methods use lazy initialization. These methods are considered as false positive.

Candidate methods. From the 39 methods, only 22 methods return the same value at each
invocation and does not use a cache or a lazy initialization. 4 out of these 22 are due to incomplete
testing. For example, the method #selectBoxBounds is defined as:

MORoot>>selectBoxBounds
”Return the selection box, note that the two corners cannot be nil”
self

assert: [selectionBoxCorner1 notNil and: [selectionBoxCorner2 notNil]]
description: ’Corners cannot be nil’.

ˆRectangle encompassing: {selectionBoxCorner1 . selectionBoxCorner2 }.

This method is tested just once. This method is an example of a poor testing.
After a scrutinization, only 18 out of the 39 methods are considered candidates for implementing

the memoization. These 18 methods represent less than 1% of the total amount of method in
Mondrian. None of these methods is responsible for a slowdown, as we fixed them along the paper.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

24 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

From numerical values to visual patterns. Outputs of traditional profilers make heavy use of
numerical values to describe the execution of the profiled software. The execution is expressed in
terms of percentage of the global execution time for each individual method. Profiling blueprints are
a graphical representation of these metrics. By moving from a textual to graphical representation of
a profiling, we gained the ability to compare many different metrics at the same time. Numerical
comparison has been traded off for visual pattern identification. Instead of seeing that #applyLayout
takes 53% of the total time execution and #bounds 40%, we see that the square representing
#applyLayout is “slightly” larger than the one representing #bounds. Even though a visualization
conveys less accurate values since we cannot precisely quantify distances and color intensity, we
gained the ability to easily perform comparisons on a large amount of entities at once, allowing us
to pinpoint the cause of the performance issues slower.

Scalability. The experiments we used for this work were realized on medium-sized applications
(Mondrian totals 2 000 methods and 20 000 lines of codes approximately). The visualization were
produced on a screen with a resolution of 1440 x 900 pixels. The largest execution was three screens
large. Zooming out is hardly a practical solution: classes and methods needs to be significantly
reduced to make more than 200 classes fit in one screen. Bertin [16] assessed that a good practice
is to offer a visualization that can be grasped at one glance, without need to scrolling or moving
around. The layout we have adopted are optimal for medium-sized applications.

Note that, strictly speaking, our blueprints are not the only visualization which suffer from
scalability. YourKit and JProfiler output their results using a textual table or simple graphics, two
visualizations fragile to scalability.

Multi-threading. Thread activity is not represented in our profiling blueprints. The experience on
Mondrian threads (Section 3.2) has been realized by solely profiling the code executed by the UI
thread. The logic thread was not started. Profiling concurrent and multi-threaded applications has
not been considered in our work. The problems solved we solved in our experiment did not exhibit
such a situation.

6. RELATED WORK

Our related work review discusses first the various dynamic information visualizations that have
been proposed, before reviewing the various approaches that have been proposed to compare
executions of two different versions of a program.

6.1. Visualization of Dynamic Information

Profiling capabilities have been integrated in IDEs such as the NetBeans Profiler‖ and Eclipse’s
Tracing and Profiling Project (TPTP)∗∗. The NetBeans Profiler uses JFluid [17], which offers a
Calling Context Tree (CCT) [18] augmented with the accumulated execution time for individual
methods. The CCT is visualized as an expandable tree, where calling contexts are sorted by their
execution time and can be expanded (respectively collapsed) in order to show (or hide) callees.
However, as CCTs for real-world applications are often large, comprising up to some million nodes,
an expandable tree representation makes it difficult to detect hotspots in deep calling contexts.

The Calling Context Ring Chart (CCRC) [19, 20] is a CCT visualization that eases the exploration
of large trees. Like the Sunburst visualization [21], CCRC uses a circular layout. Callee methods
are represented in ring segments surrounding the caller’s ring segment. In order to reveal hot calling
contexts, the ring segments can be sized according to a chosen dynamic metric. Recently, CCRC
has been integrated into the Senseo plugin for Eclipse [22], which enriches Eclipse’s static source

‖http://profiler.netbeans.org/
∗∗http://www.eclipse.org/tptp/performance/

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://profiler.netbeans.org/
http://www.eclipse.org/tptp/performance/

EXECUTION PROFILING BLUEPRINTS 25

views with several dynamic metrics. Our blueprints have a different focus, since global information
is shown instead of providing a line-of-code granularity.

Execution traces may be used to analyze dynamic program behavior. Execution traces are logged
events, such as method entry and exit, or object allocation. However, the resulting amount of data
can be excessive. In Deelen et al. [23] execution traces are visualized with nodes representing
classes and edges representing method calls. Node size and edge thickness are mapped to properties
(e.g., number of method invocations). A time range can be selected in order to limit the data to
be visualized. Another approach to visualizing execution traces has been introduced in Holten et
al. [24]. It uses the concept of hierarchical edge bundles [25], where similar edges are put together
to improve the visualization of larger traces. Execution traces allow keeping calls in sequences and
selecting a precise time interval to be visualized, which helps understanding a particular phase in the
execution of a program. Blueprint profiling offers a global map of the complete execution without
focusing on sequentiality in time. However, they offer hints about the behavior of individual methods
that help to solve a class of optimization problem, namely introducing caches.

Tree-maps [26] visualize hierarchical structures. Nodes are represented as rectangular areas sized
proportionally to a metric. Tree-maps have been used to visualize profiling data. For instance, in [27]
the authors present KCacheGrind, a front end to a simulator-based cache profiling tool, using a
combination of tree-maps and call graphs to visualize the data. Our blueprint use polymetric view
to render data. A tree-map solves a problem in a different way that a polymetric view would solve it.
A polymetric view enables one to compare several different metrics, whereas a tree-map is dedicated
to showing a single metric (besides color) in a compact space.

Greevy et al. enhanced polymetric views with a third dimension in order to visualize the
runtime behavior of systems [28]. They focus on the execution of individual features, use the
third dimension to overlay dynamic information about instanciation and message sending over
a polymetric view. Their system allows one to replay each of the steps of the trace, and is
geared towards program comprehension, while our approach focuses on performance profiling, and
provides a comprehensive view of performance metrics.

Sevitsky et al. present an information visualization tool specialized in the performance analysis
of Java programs, Jinsight EX [29]. JInsight EX uses execution slices to narrow down the data
to analyse down to a more manageable size, and proposes visualizations centered on the slices.
Previous work by De Pauw et al. [30, 31] also abstract dynamic information to the instance, method
and class levels, proposing visualizations such as instance-level histograms, and functions-instances
or inter and intra-classes call matrices. We however abstract away more information as we show
metrics instead of the more execution-event based approach employed in these works.

Reiss and Eddon adopt an approach radically different than ours, as they visualize extremely fine-
grained information of programs as they are executing [32]. JIVE visualizes for instance the state
of the java heap, file I/O operations, or informations on which class is used in which thread of the
program. Its successor, JOVE, further maps the information to source code locations that are being
executed at any given moment [33].

6.2. Comparison of Versions

Several approaches exist that compare the execution of two versions of a program.
Zhang and Gupta [34] present an approach to match two programs that behave similarly, although

they appear to be statically different. The approach matches the execution at the level of binary
instructions, and is geared at scenarios such as debugging—for instance matching of an optimized
and an unoptimized version of a program—, or piracy detection—detecting similar behavior despite
obfuscation—, and not explicitly performance. The authors focus on the performance and accuracy
of the matching algorithm. Nagajaran et al. later extended the approach, in order to support more
aggressive transformations by working at the control flow level rather than the instruction level [35].

Zhuang et al. presented a framework for differencing execution profiles named PerfDiff [36]. The
approach is based on matching CCTs. The algorithm identifies variations in the layout of the trees
or the weight—the weight being a performance metric in their case—of the nodes. The difference
algorithm is applied to selected benchmarks of programs, running under different platforms. The

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

26 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

authors report on the accuracy of the algorithm. Mostafa and Krintz propose a similar approach,
aimed this time at tracking performance across different revisions of the same program [37]. They
also employ CCTs, and perform an empirical evaluation of their matching algorithm.

We see that most approaches aiming at matching different executions of a program have primarily
been evaluated in terms of their matching accuracy. Our focus is more on how to exploit this
information: We presented visualizations summing up the differences between two versions of
a given program. Since the dynamic information we collect is higher-level than CCTs (as it is
aggregated at the level of methods and classes), we argue that the accuracy of the matching algorithm
is not as critical, hence our focus in exploiting the information.

7. CONCLUSION

In this article we presented three visualizations helping developers to identify and remove
performance bottlenecks. Providing visualizations that are intuitive and easy to use is our primary
goal. Our graphical blueprints follow simple principles such as “big nodes are slow methods”,
“gray nodes are methods likely to have side-effects”, “yellow nodes remain constant on return
values”. Our visualizations helped us to significantly improve Mondrian, a visualization engine. We
described a number of optimizations we realized. The last version of Mondrian contains an improved
version of the #applyLayout method, thus mitigating the bottleneck caused by this method, and other
optimizations.

We also introduced a visualization aimed at the retrospective evaluation of the evolution of the
performance of a system over time. The behavioral evolution blueprint allowed us to pinpoint
changes to the source code that caused performance degradation in two instances, for the Mondrian
and GitFS projects; the developer of GitFS reviewed and validated our findings.

A number of conclusions may be drawn from the experiment described in this article. First,
bottleneck identification and removal are significantly easier when side-effects and constant return
values are localized. Second, an extensive set of unit tests remains essential to assess whether a
candidate optimization can be applied without changing the behavior of the system. Third, one must
pay attention that further changes to a program may render previous optimizations less useful than
they used to be, and keep an eye over this phenomenon over time.

As future work, we plan to focus on architectural views by adopting coarser grain than methods
and classes. We also plan to further our work on the evolution of performance by proposing
visualizations that handle more versions at once.

Acknowledgment. We gratefully thank Max Leske for his feedback on our finding related to GitFS.

REFERENCES

1. Tuduce I, Majo Z, Gauch A, Chen B, Gross TR. Asymmetries in multi-core systems – or why we need better
performance measurement units. Proceedings of the Exascale Evaluation and Research Techniques Workshop
(EXERT), 2010.

2. Cornea B, Bourgeois J. Performance prediction of distributed applications using block benchmarking methods.
PDP’11, 19-th Int. Euromicro Conf. on Parallel, Distributed and Network-Based Processing, IEEE Computer
Society Press: Ayia Napa, Cyprus, 2011.

3. Bergel A, Robbes R, Binder W. Visualizing dynamic metrics with profiling blueprints. Objects, Models,
Components, Patterns, Lecture Notes in Computer Science, vol. 6141, Vitek J (ed.), Springer Berlin / Heidelberg,
2010; 291–309, doi:10.1007/978-3-642-13953-6 16.

4. Meyer M, Gı̂rba T, Lungu M. Mondrian: An agile visualization framework. ACM Symposium on Software
Visualization (SoftVis’06), ACM Press: New York, NY, USA, 2006; 135–144, doi:10.1145/1148493.1148513. URL
http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf.

5. Benbasat I, Goldstein DK, Mead M. The case research strategy in studies of information systems. MIS Q. Sep 1987;
11:369–386, doi:10.2307/248684. URL http://portal.acm.org/citation.cfm?id=35194.35201.

6. Reiss S. Visualizing the java heap to detect memory problems. Visualizing Software for Understanding and
Analysis, 2009. VISSOFT 2009. 5th IEEE International Workshop on, 2009; 73–80, doi:10.1109/VISSOF.2009.
5336418.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://scg.unibe.ch/archive/papers/Meye06aMondrian.pdf
http://portal.acm.org/citation.cfm?id=35194.35201

EXECUTION PROFILING BLUEPRINTS 27

7. Lanza M, Ducasse S. Polymetric views—a lightweight visual approach to reverse engineering. Transactions on
Software Engineering (TSE) Sep 2003; 29(9):782–795, doi:10.1109/TSE.2003.1232284. URL http://scg.
unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf.

8. Gı̂rba T, Lanza M. Visualizing and characterizing the evolution of class hierarchies. WOOR 2004 (5th ECOOP
Workshop on Object-Oriented Reengineering), 2004. URL http://scg.unibe.ch/archive/papers/
Girb04aHierarchiesEvolution.pdf.

9. Ducasse S, Lanza M, Bertuli R. High-level polymetric views of condensed run-time information. Proceedings
of 8th European Conference on Software Maintenance and Reengineering (CSMR’04), IEEE Computer Society
Press: Los Alamitos CA, 2004; 309–318, doi:10.1109/CSMR.2004.1281433. URL http://scg.unibe.ch/
archive/papers/Duca04aRuntimePolymetricViews.pdf.

10. Gı̂rba T, Ducasse S. Modeling history to analyze software evolution. Journal of Software Maintenance and
Evolution: Research and Practice May 2006; 18(3):207–236, doi:10.1002/smr.325. URL http://doi.wiley.
com/10.1002/smr.325.

11. Yang Q, Li JJ, Weiss DM. A Survey of Coverage-Based Testing Tools. The Computer Journal 2009;
52(5):589–597, doi:10.1093/comjnl/bxm021. URL http://comjnl.oxfordjournals.org/content/
52/5/589.abstract.

12. Mytkowicz T, Diwan A, Hauswirth M, Sweeney PF. Evaluating the accuracy of java profilers. Proceedings of
the 31st conference on Programming language design and implementation, PLDI ’10, ACM: New York, NY,
USA, 2010; 187–197, doi:10.1145/1806596.1806618. URL http://doi.acm.org/10.1145/1806596.
1806618.

13. Binder W. Portable and accurate sampling profiling for Java. Software: Practice and Experience 2006; 36(6):615–
650.

14. Binder W, Hulaas J, Moret P, Villazón A. Platform-independent profiling in a virtual execution environment.
Software: Practice and Experience 2009; 39(1):47–79.

15. Martin RC. Agile Software Development. Principles, Patterns, and Practices. Prentice-Hall, 2002.
16. Bertin J. Graphische Semiologie. Walter de Gruyter, 1974.
17. Dmitriev M. Profiling Java applications using code hotswapping and dynamic call graph revelation. WOSP 2004:

Proceedings of the Fourth International Workshop on Software and Performance, ACM Press, 2004; 139–150.
18. Ammons G, Ball T, Larus JR. Exploiting hardware performance counters with flow and context sensitive

profiling. PLDI 1997: Proceedings of the ACM SIGPLAN 1997 conference on Programming language design and
implementation, ACM Press, 1997; 85–96, doi:http://doi.acm.org/10.1145/258915.258924.

19. Moret P, Binder W, Ansaloni D, Villazón A. Visualizing Calling Context Profiles with Ring Charts. VISSOFT 2009:
Proceedings of the 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis, IEEE
Computer Society: Edmonton, Alberta, Canada, 2009; 33–36.

20. Moret P, Binder W, Villazón A, Ansaloni D, Heydarnoori A. Visualizing and exploring profiles with calling context
ring charts. Software: Practice and Experience 2010; 40:825–847.

21. Stasko J. An evaluation of space-filling information visualizations for depicting hierarchical structures. Int. J. Hum.-
Comput. Stud. 2000; 53(5):663–694, doi:http://dx.doi.org/10.1006/ijhc.2000.0420.

22. Röthlisberger D, Härry M, Villazón A, Ansaloni D, Binder W, Nierstrasz O, Moret P. Augmenting Static Source
Views in IDEs with Dynamic Metrics. ICSM 2009: Proceedings of the 25th IEEE International Conference on
Software Maintenance, IEEE Computer Society: Edmonton, Alberta, Canada, 2009; 253–262.

23. Deelen P, van Ham F, Huizing C, van de Watering H. Visualization of dynamic program aspects. VISSOFT 2007:
Proceedings of the 4th IEEE International Workshop on Visualizing Software for Understanding and Analysis,
2007; 39–46.

24. Holten D, Cornelissen B, van Wijk JJ. Trace visualization using hierarchical edge bundles and massive sequence
views. VISSOFT 2007: Proceedings of the 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007; 47–54.

25. Holten D. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions
on Visualization and Computer Graphics Sept-Oct 2006; 12(5):741–748.

26. Johnson B, Shneiderman B. Tree-maps: a space-filling approach to the visualization of hierarchical information
structures. VIS 1991: Proceedings of the 2nd conference on Visualization, IEEE Computer Society Press, 1991;
284–291.

27. Weidendorfer J, Kowarschik M, Trinitis C. A tool suite for simulation based analysis of memory access behavior.
ICCS 2004: Proceedings of the 4th International Conference on Computational Science, LNCS, vol. 3038, Springer,
2004; 440–447.

28. Greevy O, Lanza M, Wysseier C. Visualizing live software systems in 3D. Proceedings of SoftVis 2006 (ACM
Symposium on Software Visualization), 2006, doi:10.1145/1148493.1148501. URL http://scg.unibe.ch/
archive/papers/Gree06aTraceCrawlerSoftVis2006.pdf.

29. Sevitsky G, Pauw WD, Konuru R. An information exploration tool for performance analysis of java programs.
TOOLS Europe ’01: Proceedings of the 38th International Conference on Technology of Object-Oriented
Languages and Systems, Components for Mobile Computing, 2001; 85–101, doi:10.1109/TOOLS.2001.911758.

30. De Pauw W, Helm R, Kimelman D, Vlissides J. Visualizing the behavior of object-oriented systems. Proceedings of
International Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’93),
1993; 326–337, doi:10.1145/165854.165919.

31. Pauw WD, Vlissides JM. Visualizing object-oriented programs with jinsight. Workshop ion on Object-Oriented
Technology, ECOOP ’98, Springer-Verlag: London, UK, 1998; 541–542. URL http://portal.acm.org/
citation.cfm?id=646778.704665.

32. Reiss SP. JOVE: Java as it happens. Proceedings of SoftVis 2005(ACM Symposium on Software Visualization), 2005;
115–124.

33. Reiss SP, Renieris M. Jove: java as it happens. SoftVis ’05: Proceedings of the 2005 ACM symposium on Software
visualization, ACM: New York, NY, USA, 2005; 115–124, doi:10.1145/1056018.1056034.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf
http://scg.unibe.ch/archive/papers/Girb04aHierarchiesEvolution.pdf
http://scg.unibe.ch/archive/papers/Girb04aHierarchiesEvolution.pdf
http://scg.unibe.ch/archive/papers/Duca04aRuntimePolymetricViews.pdf
http://scg.unibe.ch/archive/papers/Duca04aRuntimePolymetricViews.pdf
http://doi.wiley.com/10.1002/smr.325
http://doi.wiley.com/10.1002/smr.325
http://comjnl.oxfordjournals.org/content/52/5/589.abstract
http://comjnl.oxfordjournals.org/content/52/5/589.abstract
http://doi.acm.org/10.1145/1806596.1806618
http://doi.acm.org/10.1145/1806596.1806618
http://scg.unibe.ch/archive/papers/Gree06aTraceCrawlerSoftVis2006.pdf
http://scg.unibe.ch/archive/papers/Gree06aTraceCrawlerSoftVis2006.pdf
http://portal.acm.org/citation.cfm?id=646778.704665
http://portal.acm.org/citation.cfm?id=646778.704665

28 A. BERGEL, F. BAÑADOS, R. ROBBES, W. BINDER

34. Zhang X, Gupta R. Matching execution histories of program versions. ESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, ACM: New York, NY, USA, 2005; 197–206, doi:10.1145/1081706.1081738.

35. Nagarajan V, Gupta R, Zhang X, Madou M, De Sutter B. Matching control flow of program versions. Proceedings
of the 25th IEEE International Conference on Software Maintenance (ICSM’07), 2007; 84 –93, doi:10.1109/ICSM.
2007.4362621.

36. Zhuang X, Kim S, Serrano Mi, Choi JD. Perfdiff: a framework for performance difference analysis in a virtual
machine environment. CGO ’08: Proceedings of the 6th annual IEEE/ACM international symposium on Code
generation and optimization, ACM: New York, NY, USA, 2008; 4–13, doi:10.1145/1356058.1356060.

37. Mostafa N, Krintz C. Tracking performance across software revisions. PPPJ ’09: Proceedings of the 7th
International Conference on Principles and Practice of Programming in Java, ACM: New York, NY, USA, 2009;
162–171, doi:10.1145/1596655.1596682.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

	1 Introduction
	2 Profiling Blueprints
	2.1 Profiling blueprint in a nutshell
	2.2 Polymetric views
	2.3 Structural distribution blueprint
	2.4 Behavioral distribution blueprint

	3 Optimizing Mondrian
	3.1 Bottleneck MOGraphElement>>bounds
	3.2 Bottleneck in MONode>>displayOn:
	3.3 Summary

	4 Behavioral Evolution Blueprint
	5 Discussion
	6 Related Work
	6.1 Visualization of Dynamic Information
	6.2 Comparison of Versions

	7 Conclusion

