
Software Process Model Blueprints?

Julio Ariel Hurtado Alegŕıa1,2, Alejandro Lagos1, Alexandre Bergel1, and
Maŕıa Cecilia Bastarrica1

1 Computer Science Department, Universidad de Chile, Chile
2 IDIS Research Group, University of Cauca, Colombia
{jhurtado,alagos,abergel,cecilia}@dcc.uchile.cl

Abstract. Explicitly defining a software process model is widely rec-
ognized as a good software engineering practice. However, having a de-
fined process does not necessarily mean that this process is good, sound
and/or useful. There have been several approaches for software process
evaluation including testing, simulation and metrics; the first one re-
quires software process enactment, i.e., an expensive, risky and long pro-
cess, and the others require high expertise for correctly interpreting their
meaning. In this paper we propose a visual approach for software process
model evaluation based on three architectural view types, each one focus-
ing on basic process elements: Role Blueprint, Task Blueprint and
Work Product Blueprint. They enable visual evaluation of different
perspectives of a software process, each being relevant for a particular
stakeholder. We illustrate the proposed approach by applying it to the
software process defined for a real world company that develops software
for retail. We show how design errors were identified.

1 Introduction

There is a generalized agreement among software practitioners about the rele-
vance of counting on a well defined process model for systematizing development.
There have been several efforts in aiding organizations toward this goal: maturity
models and standards that describe which elements should be part of a software
process, notations that allow rigorous specification, and tools that support these
notations. However, having a well defined software process does not necessarily
mean having a good process.

It is not apparent how to determine if a software process is good, or if it can be
improved in any sense before it is enacted [16]. The software process metamodel
SPEM 2.0 [15] proposes wellformedness rules for software process definition but
their scope is limited. For example, SPEM 2.0 does not determine if for a given
process some of the roles are overloaded, if there are work products that are
bottlenecks, or if there is no clear termination condition for a task cycle. What
is even more difficult about these issues is that they do not always constitute
errors, but they are indicators that something may not be right [10]. Even though
there are some metrics defined for measuring software processes [2], they provide

? The work of Julio Hurtado Alegŕıa has been partly funded by NIC Chile.



2 J. Hurtado, A. Lagos, A. Bergel, and M. C. Bastarrica

little intuition about what may be wrong, where the error is, and how to find
opportunities for improvement when there is no apparent error. How can we
present a rich software process on mere flat diagrams? Software processes should
represent a complex, dynamic and multidimensional world. Moreover, available
tools are usually intended only for software process visual specification, and not
for evaluation, let alone visual evaluation.

The convenience of specifying the software architecture with multiple views
has been agreed upon [3]. Different stakeholders require different information
for evaluations, thus it seems natural to deal with multiple process architectural
views [11]. We specify our process models using the SPEM 2.0 standard. Pro-
cess architectural views are built following an architectural recovery approach
such that they allow us to evaluate different process characteristics. We propose
three process architectural view types: Role Blueprint, Task Blueprint and
Work Product Blueprint. These blueprints are process views that make use
of metrics computed from a process model for easing understanding and evalu-
ating different aspects not available in SPEM 2.0 and its associated tools. These
visualizations have been implemented in the ProcessModel tool3 based on Moose
technology and the Mondrian tool. Visualization aids in data analysis and prob-
lem detection [14]. Using different concerns about process models in a graphical
manner, we make use of the human visual capacity for interpreting the process
in context and to evaluate its coherence and suitability [13].

We have applied our approach to the process model specification of DTS, a
real world small company that develops software for retail. We have been able to
identify several problems in the process and the company’s stakeholders agreed
that they were actual problems. The process has been redefined and the changes
are currently being applied.

2 Related Work

Software quality is a key issue in software engineering, and it highly depends on
the process used for developing it [8]. Software process quality assurance can be
addressed in different ways: metrics, testing, simulation, or formal reviews.

Canfora et. al. [2] define some ratio metrics for measuring overall software
processes, but based on this general data it is hard to know what is wrong, where
the error is located, and how to find opportunities for improvement when there is
no apparent error. However, these metrics are a key starting point. We use them
as a basis over which we build a visual layer to evaluate more specific aspects
of different process model elements. We define a evaluation approach based on
visualization whereas Canfora et. al. propose and validate some general metrics.
Our approach is based on the evidence about the visualization aids in data
analysis and problem detection [14]. Further we visualize different concerns about
process models using the human visual capacity for interpreting the process in
context and to evaluate its coherence and suitability [13].

3 Freely available at http://www.moosetechnology.org/tools/ProcessModel.



Software Process Model Blueprints 3

In Process Model Testing, process models are checked against their specifica-
tions [16]. An example of process testing is a software process assessment, where
a process and its corresponding model are evaluated based on a capability matu-
rity framework. This approach is present in CMMI [19] and ISO/IEC15504 [9].
This kind of testing activities can only be carried out once the process model
has already been implemented, tailored and enacted. It checks for adherence to
a standard but it does not evaluate the appropriateness of the process for the
organizational or project needs. Process testing requires very long time cycles.
Gruhn [7] has proposed a verification technique based on simulation results and
execution trace evaluation. Simulation has a shorter cycle, but it still requires en-
actment data. This is an appropriate verification technique if the process model
is known to be suitable for the environment, but if the model is incomplete,
underspecified or it is not suitable for the organization, the process model sim-
ulation will not yield the expected results.

Cook and Wolf [4] present a formal verification and validation technique for
identifying and measuring the discrepancies between process models and actual
executions. They do not address suitability, completeness or consistency of the
process model. Pérez et al. [17] suggest to evaluate the congruence between the
process model and a given environment based on past data. However, obtaining
these measurements is hard and the results are not precise. Formal specifications
and checking based on Petri Nets in a multi-view approach are presented in [5],
but formal checking has semantic limitations. Our process model blueprints use
SPEM 2.0 models to recover and visualize them independently using some basic
metrics, and the evaluation can be delegated to process designers in an informal
but structured and practical way.

Software inspections, walkthroughs, and technical reviews, are widely used to
improve software quality, so they are promising techniques for software processes
too. The key idea is that a group of experienced software engineers, meeting
together to review a software product, can improve its quality by detecting
defects that the product designer or developer could have overseen. Our proposal
consists of a tool that supports the software process model review based on visual
mechanisms. According to [18], the review process has three main tasks: defect
discovery, defect collection, and defect discrimination. The defect discovery is the
one that demands the highest expertise. The approach and tool presented in this
paper is intended to facilitate the process model defect discovery in a visual way
inside a planned verification and validation context. Also, the specific solution
presented in this paper can be useful for a process designer to gain some insights
about the process model design and potentially find some problems.

3 Problems in Software Process Model Evaluation

Defining a software development process is an effort to systematize and improve
software development. However, defining a software process does not necessarily
imply that the process is complete, sound and/or well defined.



4 J. Hurtado, A. Lagos, A. Bergel, and M. C. Bastarrica

Fig. 1. SPEM Model Fragment for Requirements Change Management

SPEM is a specific standard language used to define software process models.
Enterprise Architect (EA)4 and Eclipse Process Framework (EPF)5 are two pop-
ular integrated development environments (IDE) used to describe and visualize
SPEM processes. We argue that the representations provided by these tools are
not enough for easily assessing model quality. As an illustration, we will use the
process model used in DTS, a small software company.

The software process model used by DTS is written in SPEM and it is com-
posed of 57 tasks, 66 work products and 9 roles. We consider the complete
process, including project management, testing, requirements management and
technical development. Figure 1 is a screenshot of a piece of the DTS process
model visualized using EA. This model excerpt focuses on part of the require-
ments change management area and represents the main dependencies between
tasks and their related roles and work products. The process model adopted
at DTS received a careful attention in its conception by dedicated engineers.
However, a number of problems were recently detected but not easily identified.

Incorrect relationships (a,b): W4 (Change Request) should be an output of
T1 (Requirement Change Reception) instead of being an input, and W2 (Change
Estimated) should be an output of T3 (Estimate Change) instead of T2 (Re-
quirement Change Analysis). The change request is received by task Requirement
Change Reception and is used by all other tasks. The Change Estimated work
product is the result of the Estimate Change task.

Missing elements (d,e): W5 (Requirement Change Analysis) is required as out-
put of T2 (Requirement Change Analysis) and input of T3 (Estimate Change).
A new role R3 (Client) is required because it is involved in T1 and T2 (Re-

4 http://www.sparxsystems.com.au
5 http://www.eclipse.org/epf



Software Process Model Blueprints 5

quirements Change Reception and Analysis). W5 and R3 are missing because
the process has been inadequately designed.

Missing relationships (c): control links from work product W5 (Requirement
Change Analysis) to task T2 (Requirement Change Analysis) as output and to
task T3 (Estimate Change) as input are missing. Without W5 between T2 and
T3, the information flow remains underspecified.

These anomalies in the DTS process were not easily identified mainly due
to scalability, complexity and availability issues. Figure 1 depicts only a small
portion of the complete process. The complete process is multi screen which
makes it difficult to analyze. Many different sources of information are gathered
in the picture obtained from EA. As a consequence, checking the validity of the
model is often perceived as a tedious activity. A global picture can be obtained
through a simple composition within the environment, but this composition is
not automatically built in a global fashion by SPEM modeling tools.

Although we conducted our analysis on EA and EPF, the same actions could
have been made in other tools (including SPEM as UML Profile). To tackle these
issues, we propose to complement the process designer’s activities with a number
of extra visualizations. Simulation is not a practical option because SPEM 2.0
neither provides concepts nor formalisms for executing process models [1].

4 Multiple Software Process Model Blueprints

There is no unique perfect view to visually render a software process model [10].
As for most engineering activities, defining a robust, efficient and multi-view
software process is a non-trivial activity that requires flexible and expressive
tools. As a complement to software process design tools, we propose a visual
approach to evaluate some quality criteria. We introduce the notion of blueprint
as a partial but focused graphical representation of a software process model.

4.1 Process Model Blueprints in a Nutshell

Process model blueprints are graphical representations meant to help software
process designers to (i) assess the quality of software process models and (ii)
identify anomalies in a model and provide hints on how to fix them. The essence
of these blueprints is to facilitate the comparison between elements for a given
selected domain using a graph metaphor, composed of nodes and edges.

The size of a node or an edge tells us about their relative importance. In the
case that a node is “much larger” than others, this should draw the attention
of the process designer because it may reveal an anomaly or a misconception.
We identified three blueprints that help identifying opportunities for improving
software process models. Each of them focuses on a particular domain, namely
roles, tasks and work products. Table 1 summarizes the meaning of boxes, edges
and dimensions for each of these blueprints.

The visualizations we propose are based on polymetric views [12]. A polymet-
ric view is a lightweight software visualization technique enriched with software



6 J. Hurtado, A. Lagos, A. Bergel, and M. C. Bastarrica

Role Blueprint Task Blueprint Work Product Blueprint

Layout Circle layout Tree ordered layout Tree ordered layout
Node Role Task Work product
Edge Role collaboration Task order dependence Work product production

dependence
Scope Full Process Model Full Process Model Full Process Model

Node color Associated guidances Associated roles Associated guidances
Node height Required and produced Required work products Tasks where it is an input

work products
Node width Tasks where it participates Produced work products Tasks where the it is

an output

Table 1. Blueprints Details

metrics information. It has been successfully used to provide “software maps”
intended to help comprehension and visualization.

Given two-dimensional nodes representing entities we follow the intuitive
notion that the wider and the higher the node is, the bigger the measurements
its size is telling. The color interval between white and black may render another
measurement. The convention that is usually adopted [6] is that the higher the
measurement the darker the node is. Thus light gray represents a smaller metric
measurement than dark gray. An edge between two nodes n and m may be
directed representing asymmetry. Direction is usually graphically represented
with an arrow. We are not making use of other edge measurements.

4.2 Role Blueprint

Description and Specification: this blueprint shows a role-oriented perspec-
tive of a process model. A role (called Role Definition in SPEM 2.0) defines a set
of skills, competences and responsibilities required for performing it. A role is re-
sponsible of some tasks and could participate in others; also a role is responsible
of some work products. In general, the more associated to tasks, work products
and guidances a role is, the heavier the load the role will have. In this blueprint a
role is represented as a node. The width represents the quantity of tasks and the
height the quantity of work products this role is in charge of. An edge between
two roles represents the collaboration between them, i.e., they work on the same
task. Collaboration is not explicit in a SPEM 2.0 model, but it can be deduced.

Example: the Role Blueprint of DTS is presented in Fig. 2. It shows col-
laboration between roles, so we can see that the Client appears isolated. This
situation suggests that this role is either not involved in the process (and it is
a possible conceptual problem), or that the process has been badly specified.
On the other hand, the Analyst role should have been related to Engineer Man-
ager and it is not, so this is an underspecification of the process model. In this
blueprint two roles are much larger than the others: they have more work prod-
ucts assigned and they participate in more tasks. Also the role Client is small,
and this issue suggests that it is not an active participant in the software process.



Software Process Model Blueprints 7

Fig. 2. Role Blueprint of the DTS Process Model.

Interpretation: this blueprint allows us to evaluate if the assigned responsibility
is suitable for process requirements. We can also discover overloaded roles when
lightweight roles are expected or vice versa, an isolated role when collaboration
is required, and roles without training material when it is necessary for a good
performance. Therefore, a complex role could be decomposed, simple roles could
be integrated, training material could be added, collaborative techniques and
enactment constraints could be added.

4.3 Task Blueprint

Description and Specification: this blueprint shows a task-oriented perspec-
tive of the process model. A task (Task Definition in SPEM 2.0) is the basic
element for defining a process. It defines a work unit assignable to roles. A task
is associated to input and output work products. A task has a clear purpose:
it provides a complete explanation step by step of the associated work. In this
blueprint a node is a task. The width and hight of a task node represent the
quantity of work products that are required and produced, respectively, and the
color represents the number of roles involved. A directed edge between two tasks
states an dependency between them: T1 depends on T2 if T1 uses work products
produced by T2. The organization of the tasks uses a TreeOrderLayout, so they
are placed in a top-down fashion to reflect the dependency order. As a natural
and intuitive good practice, each task should be connected to a previous and a
next task, except for the first and the last.

Example: the Task Blueprint of DTS is presented in Fig. 3. Node size shows
their complexity. In the example, the Requirements Review task is more com-
plex than all others, so decomposition may be needed, e.g. Requirements Review
could be decomposed into Software Requirements Review and User Require-
ments Review. Color shows participant roles, so User Requirements Definition
does not have associated roles. This is a specification error unless the task is au-



8 J. Hurtado, A. Lagos, A. Bergel, and M. C. Bastarrica

Fig. 3. Task Blueprint of the DTS Process Model.

tomatic. Other problems may be identified in the model such as the existence of
many initial and final tasks: tasks without a possible next or previous task. An-
other problem arises due to the multiple links between tasks of different process
areas, indicating a high coupling between main process components. The tasks
on the upper left represent the management process area, those on the upper
right correspond to engineering process area and those on the bottom belong
to testing. These process areas, interpreted as process components, should be
connected with as few dependencies as possible using process ports as SPEM2.0
suggests; they can be used with composed work products and reports gener-
ated from other work products between main or facade tasks inside each process
component. Related small tasks can be redefined as steps of a larger task.

Interpretation: this blueprint allows us to evaluate if task granularity is appro-
priate for process requirements. It enables the discovery of a complex task, or a
disconnected task or task sub graph. A complex task could be decomposed and
simple tasks could be integrated. Similarly, this blueprint can be used to find
SPI opportunities and misspecifications such as high coupling, final or initial
tasks with next or previous tasks, and tasks without assigned roles.

4.4 WorkProduct Blueprint

Description and Specification: this blueprint shows a work product-oriented
perspective of the process model. A work product (Work Product Definition in
SPEM 2.0) is used, modified or produced by tasks. Roles use work products
to perform tasks and produce other work products. Roles are responsible for
work products, so they aid in identifying skills required for producing them. In
this blueprint each node is a work product. The width and height of the node
represent the quantity of tasks where the work product is an input or an output,
respectively. The color refers to the quantity of associated guidances. An edge



Software Process Model Blueprints 9

Fig. 4. Work Product Blueprint of the DTS Process Model.

between two work products designates a dependency: W1 depends on W2, if W1
is an output of a task where W2 is input. Any work product should be connected
to previous and next work products except for the first and the last.

Example: the Work Product Blueprint of DTS is presented in Fig. 4. This
blueprint shows a process with small work products except for a few of them.
System Requirements Specification is big and it can probably be divided into
simpler work products. Very few work products appear colored, so this process
has not defined a homogeneous guidance for executing the defined process, i.e.
the process may not be repeatable because each performer may choose a different
the representation. The work product Unit Test Checklist is produced during the
development, but it is not represented in the model, so it is incorrectly modeled
as an initial work product. The same situation occurs with Solution Proposal
because even if it is not a final product, no task consumes it. It is either a waste
work product, so process grease can be eliminated (process improvement), or it
was wrongly specified (process model specification improvement).

Interpretation: this blueprint allows us to evaluate if a work product is a bot-
tleneck risk, to discover a disconnected work product, or to identify isolated
descriptions in the process model. It can also be used to find SPI opportunities
such as complex, bottleneck or waste work products. Guidances are very im-
portant in this blueprint because the more formal a process model is the more
reference material it needs, so the darker the nodes will be. For example, Unified
Process defines templates for each work product, whereas Extreme Programming
does not. Similar to tasks, work products must be separated by process areas;
connections between them are first candidates to be component ports.

5 Process Model Blueprints Application: A study case

DTS’s development process has been defined as a SPEM 2.0 model and imple-
mented in EPF. Even though some evaluations such as CMMI appraisals were
included, there is still no information about the quality of the process model itself



10 J. Hurtado, A. Lagos, A. Bergel, and M. C. Bastarrica

Blueprint Identified Problems Quantity Improvements

WorkProduct Few guidelines, some are very long, some are 31 23
Blueprint disconnected, many initial and final artifacts
Task Tasks without roles, disconnected tasks, 22 19
Blueprint many initial tasks, many final tasks, many

relationships big tasks, deformed tasks
Role Roles with light load, roles with weight 7 5
Blueprint load, roles isolated, there are few guidelines
Total 60 47

Table 2. Process Model Problems Identified with PMBlueprints

or the adequacy with the company’s goals. As part of its SPI project DTS wants
to assess the quality of its process, so they used the Process Model Blueprints.
The problems found were used as input for the following improvement cycle. The
evaluation process was carried out by two process engineers, one from DTS and
another one from the University of Chile, and two software engineers for process
definition. The steps followed were:

(1) Visualization: the process engineers imported the model from EPF and they
realized a short review. Some errors in the tool were identified and some aspects
were tuned. A first visualization of the blueprints was generated.

(2) Potential problem identification: for each blueprint problems were identified.
Each problem was recorded and a trivial analysis was realized in this step.

(3) Problem analysis: each blueprint was used to find a symptom of a prob-
lem and the related elements. For example, Analysis was not related to Client
and Chief Engineer roles, so it is possible that some tasks where these roles par-
ticipated were not adequately specified. Some problems required more analysis
and discussion with users of the software process.

(4) Data collection: the potential and actual problems were collected, and also
some solutions were proposed.

(5) Data analysis: the data collected in this study case was analyzed and the
main results are presented below.

Table 2 summarizes the main problems found during the evaluation. For a
total of 132 process elements, 47 actual problems were found (false positives have
been discarded). So, the process model error rate was of 0.356 errors per model
element. In general, the review found that there were few guidances associated
to model elements. This situation suggests low formality in software process
specification. Disconnected elements cause modeling problems: some connections
were omitted at modeling time and others caused serious conceptual problems
in the software process. For example, the isolated Client role was a symptom
of a problem, and actually a big problem: the client was not involved in many
tasks where his/her participation is required, specially in requirements tasks. We
suggest two kinds of improvements:

Software Process Improvements: the main suggested improvements are: in-
crease guidance for roles (guide of work) and for work products (templates,



Software Process Model Blueprints 11

Blueprint Improvements to Specification Improvements to Process

WorkProduct Blueprint 19 4
Task Blueprint 16 3
Role Blueprint 2 3
Total 37 10

Table 3. Improvements suggested with PMBlueprints

examples and concepts); task re-design for getting tasks of medium size (neither
too large nor too small), such as Requirements Review ; big work products decom-
position such as System Requirements Specification; decrease coupling between
process areas, with few relationships between work products and tasks; increase
the client participation and improve the collaboration required between the An-
alyst and Engineer Manager roles. The bottleneck risks identified on the System
Requirement Specification, Alpha Component and Alpha System Cycle n work
products are normal bottlenecks because of the incremental nature of the soft-
ware process, so these work products are completed and refined in each cycle of
the software process. However, the Architecture work product and its associated
tasks are not suitable to this incremental development.

Software Process Model Specification Improvement: the main improve-
ments to software model specification are about missing nodes, edges and guid-
ances. Several problems were identified directly, others required more analysis as
collaboration between specific roles, and others were generally due to conceptual
problems of the software process.

6 Conclusion and Further Work

As a complement to process model design, it is also necessary to evaluate soft-
ware processes. This paper presents a mechanism for recovering software pro-
cess architectural views based on blueprint visualization. Many process model
blueprints can be defined, but three essential ones have been described here:
Task Blueprint, Role Blueprint and Work Product Blueprint. The
approach has been complemented with ProcessModel, the visualization tool we
built (all screenshot used in this paper were obtained from ProcessModel), based
on Mondrian and Moose. This tool imports process models defined in SPEM 2.0
from EPF, and automatically produces the blueprints described in this paper.
These blueprints are used to find errors and problems in the specification and
improvement phases of software process model. The paper presents an experience
with a process being implemented in a small company using EPF. The assess-
ment we conducted identified a number of important problems. This experience
lets us conclude that our approach is useful for the evaluation of software pro-
cess models within a SPI project. However, more experience is required for more
conclusive results; metrics and blueprints should also be extended, formalized
and validated. Some limitations of our approach occur because different visu-
alizations can be obtained from different metrics, so there is no unique way of



12 J. Hurtado, A. Lagos, A. Bergel, and M. C. Bastarrica

measuring and the interpretation must be put in context. The approach can be
extended using goal oriented metrics. Currently, the approach is been used for
evaluating the open source process models defined in the EPF website, and it is
being applied in other small companies in Chile. Also the tool is being improved,
and other blueprints can be defined based on other concepts and elements defined
in SPEM 2.0, or based on other metrics.

References

1. Reda Bendraou, Jean-Marc Jezéquél, and Franck Fleurey. Combining Aspect and
Model-Driven Engineering Approaches for Software Process Modeling and Execu-
tion. In ICSP 2009, pages 148–160, Berlin, Heidelberg, 2009. Springer-Verlag.

2. Gerardo Canfora, Félix Garćıa, Mario Piattini, Francisco Ruiz, and Corrado Aaron
Visaggio. A family of experiments to validate metrics for software process models.
Journal of Systems and Software, 77(2):113–129, 2005.

3. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stafford. Documenting Software Architectures. Addison-
Wesley, 2002.

4. Jonathan E. Cook and Alexander L. Wolf. Software process validation: quanti-
tatively measuring the correspondence of a process to a model. ACM TOSEM,
8(2):147–176, 1999.

5. Jidong Ge, Hao Hu, Qing Gu, and Jian Lu. Modeling Multi-View Software Process
with Object Petri Nets. ICSEA 2006, 0:41, 2006.

6. Tudor Gı̂rba and Michele Lanza. Visualizing and characterizing the evolution
of class hierarchies. In WOOR 2004 (5th ECOOP Workshop on Object-Oriented
Reengineering), 2004.

7. Volker Gruhn. Validation and verification of software process models. In Proceed-
ings of the European symposium on Software development environments and CASE
technology, pages 271–286, New York, NY, USA, 1991. Springer-Verlag New York,
Inc.

8. Watts S. Humphrey. Managing the Software Process. Addison-Wesley, Reading,
MA, 1989.

9. ISO. ISO/IEC 15504 : Information technology - software process assessment and
improvement. Technical report, 1998.

10. David Jacobs and Chris Marlin. Multiple view software process support using the
MultiView architecture. In ISAW-2 and Viewpoints ’96, pages 217–221. ACM,
1996.

11. David Jacobs and Chris D. Marlin. Software process representation to support
multiple views. IJSEKE 1995, 5(4):585–597, 1995.

12. Michele Lanza and Stéphane Ducasse. Polymetric Views-A Lightweight Visual
Approach to Reverse Engineering. TSE 2003, 29(9):782–795, September 2003.

13. Jill H. Larkin and Herbert A. Simon. Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11(1):65–100, 1987.

14. Michael D. Lee, Marcus A. Butavicius, and Rachel E. Reilly. An Empirical Evalu-
ation of Chernoff Faces, Star Glyphs, and Spatial Visualizations for Binary Data.
In APVis 03, pages 1–10. Australian Computer Society, Inc, 2003.

15. OMG. Software Process Engineering Metamodel SPEM 2.0 OMG. Technical Re-
port ptc/08-04-01, 2008. Object Managemente Group.



Software Process Model Blueprints 13

16. Leon Osterweil. Software processes are software too. In ICSE 1987, pages 2–13,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

17. G. Perez, K. El Emam, and N. H. Madhavji. Evaluating the congruence of a soft-
ware process model in a given environment. In ICSP 1996, page 49, Washington,
DC, USA, 1996. IEEE Computer Society.

18. C. Sauer, D.R. Jeffery, L. Land, and P. Yetton. The effectiveness of software devel-
opment technical reviews: a behaviorally motivated program of research. Software
Engineering, IEEE Transactions on, 26(1):1–14, Jan 2000.

19. SEI. CMMI for Development, Version 1.2. Technical Report CMU/SEI-2006-TR-
008, Software Engineering Institute, 2006.

20. Edward Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.


