
Visualizing and Assessing a Compositional
Approach of Business Process Design

Sebastien Mosser1, Alexandre Bergel2, Mireille Blay–Fornarino1

1 University of Nice Sophia – Antipolis
Cnrs, I3s Laboratory, Modalis team

Sophia Antipolis, France
{mosser,blay}@polytech.unice.fr

2Department of Computer Science (DCC)
University of Chile, Santiago, Chile

www.bergel.eu

Abstract. In the context of Services Oriented Architecture (Soa), com-
plex systems are realized through the design of business–driven processes.
Since the design of a complete process can be very complex, composition
tools such as aspects and features propose to define large systems by
composing smaller artifacts (more easy to understand) into a complex
one. But these techniques shift the system complexity into the definition
of composition directives able to build it. At composition time, process
designers needs to be supported to understand and assess their designed
systems. We propose in this article a set of visualizations to represents
composition and then identify patterns and categorization. We use the
Adore framework as underlying composition platform. We validate this
work by presenting in this article instance of these visualizations obtained
from a Car Crash Crisis Management system (CCCMS, a comparison
referential for Aspect Oriented Modeling techniques). We use these vi-
sualization to assess the Cccms realization.

Note for the proceeding reader: this paper makes use of colors. Although not
mandatory for its understanding, an online (colored) version of this paper will
ease the reading.

1 Introduction

An application that follows the Service Oriented Architecture paradigm (Soa,
[1]) is an assembly of services that realizes business processes. Business processes
are defined by business specialists and typically involve many services that are
composed in a variety of ways. Furthermore, the need to extend a Soa applica-
tion with new business features (to follow market trends) arises often in practice.
In the technological context of Web Services, business processes can be imple-
mented as orchestrations of services [2]. Existing tools and formalisms related
to business processes (e.g. Bpmn notation [3], Bpel industrial language [4]) are
essentially technologically-driven. They use a design–in–the–large approach and

http://www.bergel.eu

2 S. Mosser, A. Bergel, M. Blay–Fornarino

do not intrinsically provide language constructions and frameworks to support
the introduction of new features into existing processes.

New paradigms such as aspects [5] and features [6] model application in terms
of composing smaller units. Assuming that a complex system is difficult to un-
derstand by humans, they propose to reduce the complexity by defining several
smaller artifacts instead of a single and large one. They identify and encapsulate
parts of models that are relevant to a particular concern. A same feature may be
shared and integrated into several processes simultaneously. These artifacts are
then composed to produce the expected system. These approaches help taming
the complexity of business processes design. As a consequence, the intrinsic com-
plexity of the system is shifted into the composition directives used to build it.
When a system involves many processes, it is necessary to have a holistic point of
view on features, compositions and business processes to grasp it. In this paper
we examine visualization method to tackle complexity of compositions at the
application level.

The paper makes the following contributions and innovations:

– a number of visualizations dedicated to support designers when they define
business processes using a compositional approach.

– benefits and design weakness are revealed using a number of patterns to
assess compositions quality.

– scalability of the approach is sketched by using a very large case study as
running example.

We motivate this contribution by presenting in section 2 our running exam-
ple. Visualizations used to represent and assess compositions are then described
in Section 3. Section 4 briefly presents implementation details. We propose a
discussion on the approach benefits (associated to interesting perspectives) in
Section 5. Finally, Section 6 describes an overview of related work, and Section
7 concludes this paper.

2 Running Example: Realizing a CCCMS using ADORE

This section presents the running example used to validate the visualization
approach defended in this paper. It also presents the composition framework we
used to realize this example, and highlights our identified needs of visualization.

2.1 Case Study: A Car Crash Crisis Management System

In Kienzle et al. [7], authors propose a common case study (a Crisis Manage-
ment System, Cms) to compare existing Aspect Oriented Modeling approaches
between each other. We consider this case study as a reference, and use it as a
running example to illustrate the problematic tackled in this paper and the con-
tribution we made. According to the definition given by this case study, a Cms
is “a system that facilitates coordination of activities and information flow be-
tween all stakeholders and parties that need to work together to handle a crisis”.

Title Suppressed Due to Excessive Length 3

Many types of crisis can be handled by such systems, including terrorist attacks,
epidemics, accidents. To illustrate the case study, they provide an instance of a
Cms in the context of car accidents. They define this system as the following:

“The Car Crash CMS (Cccms) includes all the functionalities of general
crisis management systems, and some additional features specific to car
crashes such as facilitating the rescuing of victims at the crisis scene and
the use of tow trucks to remove damaged vehicles.”

The requirement document defines ten use cases, described using textual
scenario. Each scenario defines first a main success scenario which represents
the normal flow of actions to handle a crisis (e.g., retrieve witness identity,
contact firemen located near to the crash location). Then, a set of extensions are
described to bypass the normal flow when specific actions occurs (e.g., witness
provides fake identification, firemen are not available for a quick intervention).

2.2 Composition framework: ADORE

The Adore framework defines a compositional approach to support complex
business processes modeling, using the orchestration of services paradigm. Mod-
els describing business–driven processes (abbreviated as orchestrations, defined
as a set of partially ordered activities) are composed with process fragments (de-
fined using the same formalism) to produce a larger process. Fragments realize
models of small behavior and describe different aspects of a complex business
process. Adore thus allows a business expert to model these concerns separately
and then compose them.

We only provide in this section an informal description of the techniques
used in Adore to support the composition. Using Adore, designers can define
composition units (abbreviated as composition) to describe the way fragments
should be composed with orchestrations. The merge algorithm used to support
the composition mechanism [8] computes the set of actions to be performed on
the orchestration to automatically produce the composed process. Interaction
detection mechanism helps designers to build reliable processes as output of the
composition framework. Implementation details, environment screenshots and
video demonstrations are available on the project web site1.

We proposed in our previous work [9] a realization of the Cccms system
using Adore. We realized all the use cases main scenarios as orchestration of
services, and extensions as fragments to be integrated into these orchestrations.
The complete set of designed models (12 orchestrations & 24 fragments, repre-
senting 196 activities scheduled by 224 relations in terms of implementation) is
available on the Cccms realization web page2

1 http://www.adore-design.org
2 http://www.adore-design.org/doku/examples/cccms/

http://www.adore-design.org
http://www.adore-design.org/doku/examples/cccms/

4 S. Mosser, A. Bergel, M. Blay–Fornarino

2.3 Need for Visualization Techniques

When developing a large system, designers handle a large set of initial orches-
trations, and a large set of fragments to apply in these orchestrations. Adore
tackles the complexity of integrating fragments into orchestrations, at the ac-
tivity level. As a consequence, designers can extract from the tool very detailed
and fine–grained information about the effect of their fragment application. It
results into an obscrure set of composition details, as shown in Fig. 1. This fig-
ure represents3 one of the ten use–case driven composition extracted from the
Cccms requirement document. It represents 7 fragments used in the context of
this composition, and the different unification computed by Adore in order to
perform the integration of these fragments into an orchestration.

Fig. 1. Detailed visualization of a composition (at the activity level).

Such a detailed and focused view of composition is not scalable to support
the design of large system. Visualization techniques of large data set such as
3 To define this visualization, we extract raw information from the Adore engine and

use a model transformation to obtain a Graphviz source code associated to these
information. The source is then compiled using the dot tool to produce a Png file.

Title Suppressed Due to Excessive Length 5

fish–eye [10] can tame the readability problems, but do not reduce the amount
of details visualized in this representation. When designing a complete set of
business processes using a compositional approach, the objectives of designers
are to retrieve a holistic representation of the involved entities to understand
easily what they are doing. Such a global visualization is needed at both design
and analysis time.
Design Phase. When building a complete system using a compositional ap-
proach, designer needs to understand at a coarse–grained level the interactions
between the different composition entities they are manipulating. At this step,
designers focus on the fragments in terms of impact (e.g., “the fragment throws a
fault”) instead of their detailed behavior (e.g., “when a resource takes too much
time to reach the crisis location, a timeout fault must be thrown”).
Analysis Phase. After the composition directives execution, designers obtain
a composed system. At this step, they need to identify critical points of the
composed system, for example to design unit tests. This step focuses on the
comparison between the intrinsic complexity of the original entities and the
composed result.

3 Visualizing Compositions using Mondrian

We describe in this section the polymetrics view techniques, used to define three
different visualizations of compositions. These visualization are then described
and applied to the Cccms example.

The common objective of these three visualizations is to provide dashboards
to designers. Composition dashboards are graphical representations meant to
help designers to (i) get a scalable and global overview of the compositions
present in an orchestration-based application, (ii) identity abnormal composition
and (iii) facilitate the comprehension of a large composition by categorizing
compounds. The idea of these dashboards is to enable a better comparison of
elements constituting a program structure and behavior.

3.1 Polymetric views technique description

The visualizations we propose are based on the polymetric view [11]. A polymetric
view is a lightweight software visualization technique enriched with software
metrics information. It has been successfully used to provide “software maps”
intended to help software comprehension and visualization. Figure 2 illustrates
the principle of polymetric view.

Given two-dimensional nodes representing entities, we can map up to 5 met-
rics on the node characteristics: position properties X and Y , height property,
width property and color property:

– Size. The width and height of a node can render two measurements. We
follow the intuitive notion that the wider and the higher the node, the bigger
the measurements its size is telling.

6 S. Mosser, A. Bergel, M. Blay–Fornarino

width property

height
property

color
property

edge width and
color properties

X property

Y
property

Fig. 2. Principle of polymetric view.

– Color. The color interval between white and black may render one measure-
ment. The convention that is usually adopted [12] is that the higher the
measurement the darker the node is. Thus light gray represents a smaller
metric measurement than dark gray.

– Position. The X and Y coordinates of the position of a node may reflect two
other measurements.

3.2 Fragments Dashboard (Design Phase)

This visualization represents all the fragments (as square) involved in a system,
focusing on their impact. We have identified several impact properties repre-
sented as boxes: (i) hooked variable modification, (ii) exception throw, (iii)
fault handling, (iv) initial process execution inhibition and finally (v) restricted
process inhibition. To illustrate this visualization, we instantiated it on the Cc-
cms example (Fig. 3). It represents the 24 fragments defined to answer to the
different use–cases extensions defined in the requirements.
Interpretation. Based on the graphical representation obtained in this view,
we have identified 7 different fragment categories, grouped into 3 main families:
business extensions (B), fault handling (F) and control–flow inhibition (I).

– Business extensions (B): The white fragments only enrich existing process
with new additional behavior. They do not modify the initial logic of the
business process, and only add new features to enrich it.

– Fault handler (F): Yellow boxes represent fault handling property. There
are several ways to deal with a fault when it occurs in a process: (i) doing
a re–throw (green property) to customize the fault, (ii) bypassing the fault
(by modifying data to handle the problem, blue property) locally and (iii)
handling the fault by using a business-driven reaction (no other property).

– Control–flow inhibition (I): The red property represents the inhibition of
an activity and its followers in a business process. The pink property is a
restriction of the red one, since the fragment only inhibits the followers of

Title Suppressed Due to Excessive Length 7

Fig. 3. Fragments dashboard instantiated on the Cccms example.

an activity. Correlated with the fault thrower property (green color), we
can identify precondition (activity inhibition & throw) and postcondition
(followers inhibition & throw) checker. The pink–only fragments represents
“dangerous” fragments, which inhibit several activities using a non–standard
behavior. A deep understanding of the business–domain is necessary to grasp
their behavior properly. The timeout fragment is a typical example of this
kind of fragments: instead of “simply” throwing an exception when the sys-
tem detect that a resource takes too much time to reach the crisis location,
the Cccms business model asks to stop whatever the system was doing and
urgently inform a human coordinator able to decide what to do to counter-
balance the situation.

Consequently, this view helps designers to perform a coarse–grained identifi-
cation of their critical fragments. We have shown this criticality by explaining the
pink–only fragments in the previous paragraph. Other dangerous color scheme
are green–only (error throwing in parallel with legacy activities) and red–only
(control–flow inhibition with a business–driven reaction).

3.3 Composition Dashboard (Design Phase)

The previously defined view helps designer to understand the different fragments
used in a system. We focus now on the visualization of composition defined be-

8 S. Mosser, A. Bergel, M. Blay–Fornarino

tween fragments and business processes. The composition dashboard visualiza-
tion represents business processes as rectangles, and fragment using the 4 squares
pattern previously defined. A link between two entities means that they are used
together in a composition. The Cccms case study instance of this visualization
is depicted in Fig. 4. It represents the 24 fragments and their application on the
11 orchestrations used to realize the use cases.

Fig. 4. Composition dashboard instantiated on the Cccms example.

Interpretation. This visualization helps the designer to understand the de-
picted system in a holistic way. We identify the following composition categories:

– Orphans (O): Orphans orchestrations are never involved in a composition
(e.g., executeMission and execSupObMission). Their identification helps
to detect forgotten composition directives in a complex system. In the Cc-
cms context, they realize very basic use cases which do not define any sce-
nario extensions. As a consequence, there is no fragment associated to these
entities.

– Lack of Fault–handlers (Lf): yellow–tagged fragments represent fault han-
dlers. This visualization allows designers to easily identify a composition
which does not involve any fault handler. The lack of fault handling in a pro-
cess may leads to uncaught fault and jeopardize the behavior of the global
system. It can also detects very basic processes which cannot fail.

– Conditioned behaviors (C): Several fragments realize precondition (red &
green) and postcondition (pink & green) checkers. Processes involved in a

Title Suppressed Due to Excessive Length 9

composition which relies on such checkers must be considered as a good
candidate for integration test definition.

– Cross-cutting / Shared concern (S): We can easily identify two shared frag-
ments in this case study. The first one is a precondition checker (“is the user
authenticated?”), and the second one is a business driven preoccupation (“re-
handle the crisis due to a change of external circumstances”). They clearly
represent preoccupations which cross-cuts several scenario. Their identifica-
tion helps to identify cross–cutting concerns and can drive system testing
and re–engineering.

– Critical / Dangerous behavior (D): Thanks to the fragments dashboard, the
pink–only fragments were identified as critical (with other color scheme).
Such fragments can inhibit the execution of a process subpart without using
usual mechanism (e.g. fault throwing) to counter–balance their inhibition.
As a consequence, orchestrations enriched using these fragments will require
a specific attention from the designer.

– Fragment composed on other fragments (FoF): We can notice that several
fragments are also composed with other fragments. This view lets designer
identify such compositions and helps to grasp a semantic link between frag-
ments when discovering an unknown system.

This view lets us clearly identify business–driven processes (using white–only
fragments) from technical ones. Technical processes deal with precondition and
postcondition checking, and do not involve any business driven fragment. On
the contrary, high–level business processes rely on business–driven fragments
to change the initial control–flow. It produces a dichotomy between technical
processes (assignIntRes, authUser, resolveCrisis) and business–driven pro-
cesses (the others). Based on this categorization, we can notice two things in the
context of the Cccms:

– Categorizing the resolveCrisis process as technical seems weird as it corre-
sponds to the main use case of the Cccms. But the scenario realized through
this process is clearly technical (i.e., opening a crisis case, asking partners to
handle this crisis, closing the case when the crisis is ended) and does not in-
volve any business–driven logic (realized in the other processes, which really
handle the crisis).

– We can notice the captureWitnessReport process, which involves fragments
dealing with postcondition checking, fault–handling and business–driven ex-
tension in the same composition. As a consequence, this process is both
technical and business–driven. This process is critical in terms of Cccms
business–domain: it realizes the retrieval of car crash witness information in
a report and drives the trigger of specific missions according to this report.
As a consequence, it does not fulfill a single objective and use very differ-
ent fragments to achieve its complete behavior. This process can be then
considered as an self–determining subsystem in the Cccms context.

Moreover, this visualization supports designers when debugging their com-
positions. This view can identify in a user–friendly way forgotten composition
(through orphans processes), or the lack of fault handler or checker.

10 S. Mosser, A. Bergel, M. Blay–Fornarino

3.4 Composition Zoom (Design Phase)

When multiple fragments are composed with a process, designers need to restrict
their visualization on the system to focus on a given composition. This zoomed
visualization opens the orchestration box, describing where the fragments are
integrated into the initial process. To emphasize the scalability4 of this visual-
ization, we use the handleAWorker process, which is the biggest composition in
this case study. The obtained instance is represented in Fig. 5.

Fig. 5. Composition zoom instantiated on the handleAWorker process.

Interpretation. This visualization supports a focus on a specific composition
and facilitates navigations throughout the orchestration set. Based on this rep-
resentation, we can easily identify the following concerns in a given composition:

– Isolated activities (I): some activities are not involved in any composition.
They represent technical activities which do not interfere with the realized
scenario. In this particular example, they implement initial message recep-
tion, final response sending and other technical activities

– Shared activities (Sa): this visualization lets us clearly identify when several
fragments are applied at the same location in a business process (i.e. a6 and
a7 activities). Adore supports the automatic composition of these fragments
into a merged one. However one may need to visualize them simultaneously
to understand the merged behavior. In this example, fragments applied on
a6 deal with the non–arrival of a resource at the crisis location. Focusing
only on these 3 fragments helps to support the design of the system: are
all the non–arrival reasons handled by the process? Are these fragments
semantically conflicting?

– Shared Fragments: this view lets the designer identify shared (i.e. used sev-
eral times) fragments for a given composition. Such fragments usually rep-
resent cross-cutting concerns. The fact that a fragment is shared with other
artifacts gives extra–information when working on its composition:

4 The same composition is depicted at the activity level in Fig. 1.

Title Suppressed Due to Excessive Length 11

• Multiple / Shared targets (St): this fragment is related to others pro-
cesses. This information is a fine–grained version of the “shared concern”
one (from composition dashboard), linking a process activity to others
processes through the use of a common fragment. It can drive the explo-
ration of an unknown system by following such links from a process to
another one.

• Multiple / Shared usage (Su): this fragment is a factorized enrichment
of the initial scenario. As a consequence, it represents a chronic situation
which requires special attention when testing and debugging the system.
When a fragment is merged several time in the same process, it can
introduce redundant activities in the final composition result. This view
helps to understand the origin of such redundancy.

3.5 Complexity Dashboard (Analysis Phase)

When building a system using a compositional approach, the fragments added
into the legacy business process enrich the initial behavior. It is interesting to
visualize the difference between the initial and composed process to identify com-
position families. We use several indicators to model business process complexity
(inspired by the ones defined by Vanderfesten et. al, [13]). In this view, we use
the following indicators to represent the system. The complete Cccms system
is represented in Fig. 6.

– width: The width of a process represents the maximum number of activities
executed concurrently in the control–flow.

– height: The height of a process represents the maximal length of the process.
– maze: The maze of a process represents the number of different paths avail-

able in the process. We map the maze indicator to the color dimension of
the polymetric view.

Interpretation. Using this visualization, designer identify composition families,
in terms of process complexity evolution (denoted as ∆i, where i is a business
process indicator).

– ∆w (width expansion): When the composed process is larger than the initial
one, it implies that several activities are executed in parallel of the initial be-
havior. Such an intensive parallelism is resource-consuming, and may be de-
ployed on specific high–performance server. As a consequence, designers can
identify from this visualization processes requiring a specific attention about
performances after composition. In this example, the handleSupObsMissions
process is a typical case of ∆w. Fragments used in this composition introduce
several notifications and interactions with other systems (e.g., national crisis
management center, internal message bus) done concurrently to the initial
scenario.

– ∆h (height expansion): The augmentation of a process height induces an
execution control–flow longer than the initial one. The composition impacts
the process execution time and the quality of service is then identified easily

12 S. Mosser, A. Bergel, M. Blay–Fornarino

Fig. 6. Complexity dashboard instantiated on the Cccms example.

using this visualization. In the execRescMission composition, the fragment
introduces an interaction with an external system (retrieving victim’s med-
ical history before starting the health-care process).

– ∆m (maze expansion): A dark color identifies a complex process, defining
a lot of different paths in its control flow. A contrast change between an
initial process and its composed result indicates that the activities defined
in this process are more connected between each others. In the Cccms ex-
ample, the captureWitnessReport process is enriched with several small
fragments. According to their impact properties, these fragments deal with
condition checking and fault handling. As a consequence, the composed pro-
cess contains a lot of new paths (e.g. fault bypass) available during the
execution of the process. One should pay attention to the possible semantic
interactions introduced by such a composition (e.g the process handles two
faults f and f ′ but does not define what to do if these two faults happens
at the same time).

Based on the previously explained ∆i expansions, we identify three critical
situations easily identifiable in this visualization:

– Global Expansion (G): This phenomenon is identified by an expansion of
all the ∆i indicators. The handleAMission process illustrates this global ex-
pansion. This strongly indicates that the process designer should particularly
focus on this process when designing test, as its apparent initial simplicity
hides a very complex process once composed.

Title Suppressed Due to Excessive Length 13

– Initial Process Absorption (A): A process is absorbed by an extension when
the composition output looks like the absorber in terms of complexity. Se-
mantically, it often highlights a requirement granularity problem, where the
behavior defined as scenario extensions is more complex than the initial
scenario. The requestExtRes process illustrates this phenomenon, as it is
absorbed by the degradedRes fragment. In this case, the system initially re-
quires an external resource, and the extension defines all the actions to be
performed when such a resource is not fully available to handle this particular
crisis.

– Resonant Composition (R): Resonance is a particular case of the ∆m ex-
pansion. It indicates a lot of interactions between activities in fragments and
process, resulting into a labyrinthine process after composition. Designers
should handle these processes by taking care of their inherent complexity,
focusing on test design and condition checking. The handleAWorker process
is a typical example of such a resonance.

4 Implementation & Validation

Composition engine implementation. The concrete Adore engine (process rep-
resentation & composition algorithm) is implemented as a set of logical rules,
using the Prolog language. To make Adore interoperable with other tools, we
provide an export mechanism, based on Xml. Adore internal representation of
orchestrations and business indicators can be exported as Xml documents.

Visualization engine implementation. Our composition dashboards are rendered
using Mondrian5, an agile visualization engine. For the purpose of the experi-
ment, Mondrian operates directly on a metamodel that reifies all the notions
introduced in this paper. 6

Validation. The Adore framework was used in five different case studies7, from
a simple proof of concept to real-life systems. Business domain handled in these
case studies are very diversified (e.g. integer arithmetic, web 2.0 folksonomies,
information broadcasting inside academic institution). Visualization techniques
presented here were applied with success to these five examples. We present the
Cccms example in this paper because we think it is the more pertinent to de-
scribe the approach (important set of processes leads to a scalability challenge).

5 Discussions & Perspectives

The visualization techniques described in this paper really helps the design of a
very large system when using a compositional approach. Considering composi-
tions as first class entities, we provide to designer a framework able to support
5 http://www.moosetechnology.org/tools/mondrian
6 www.moosetechnology.org/tools/adore
7 Details here: http://www.adore-design.org/doku/examples/start

http://www.moosetechnology.org/tools/mondrian
www.moosetechnology.org/tools/adore
http://www.adore-design.org/doku/examples/start

14 S. Mosser, A. Bergel, M. Blay–Fornarino

their design process. Based on these techniques, we identify chronic fragment
patterns and sketch a categorization of these entities. Moreover, when analyzing
the composed result, we identify critical points where process extensions interact
violently with initial behavior. These critical points are easily identifiable using
our graphical representation, and may leads to design weaknesses detection. As-
suming the fact that the design fits the described requirements, such points can
then highlight client requirements weaknesses.

In this paper, we voluntarily focus our visualization work on composition
definitions. Our goal is to “understand” a system defined by composition, and
support the designer during the design process. We never addressed performances
visualization. In an Soa realized using orchestrations of Web Services, partner-
ships between services and processes is a key point for performance measurement.
The invocation of an external partner costs a lot (in terms of data exchanged
over the network). Even if Adore proposes a simple visualization of process
partners, a Mondrian visualization of the global choreography of services [2]
will help the designer to easily identify bottlenecks and dangerous patterns in
the designed system.

Defining a software using composition techniques often leads to conflicting
situations [14,15]. Adore defines a set of conflict detection rules to identify con-
flicts in the composed processes. For the same reasons that Adore raw visual-
izations do not scale large system representations (too detailed data), designers
retrieve from the framework a lot of details concerning the different conflicts
detected by the application of detection rules over their models. The composi-
tion zoom visualization helps designers to identify interaction niche (e.g. shared
activities), and then tend to reduce the scope of informations handled by the
designer. Even if conflict detection mechanisms can be used to automate the
detection of conflict, pragmatic conflicts8 will always need an intervention of the
designer to be handled properly. consequently the definition of a Mondrian
visualization to support conflict resolution will support the global approach and
helps designer during the composition process.

6 Related Work

Pfeiffer and Gurd address the problematic of aspect visualization [16]. They use
Treemaps to provide a very abstract visualization of aspect oriented programs,
based on a hierarchical organization of visualized entities (e.g., package, class).
We propose in this work an intermediate representation, focused on fragment
(advice) semantic and independent of any hierarchical relation between entities.
Moreover, the use of polymetrics views let us map process metrics to visualized
entities.

Network monitoring community define tools such as Nagios [17] to supervise
large networks. These tools define interactive visualization to monitor active

8 which are induced by the business domain (e.g., fault exclusion, overlapped condi-
tions)

Title Suppressed Due to Excessive Length 15

networks and collect incidents. Techniques used to facilitate the visualization of
very large network can be reused to make our work more scalable.

All the visualizations presented in this paper are polymetric views. This visu-
alization mechanism has been essentially used to assess software source code [18].
Using polymetric views to assess a software process models has not been consid-
ered so far. A number of work may be related however.

Visualizing dependencies instead software component instead of their com-
position has been a much more active research topic. For example, D’Ambros
et al. [19] visualize how bugs are related to software components. A number
of visualizations are providing, ranging from tree maps to complex graph-like
structures, on which different layouts are applied.

A number of other visualizations are commonly employed to visualize soft-
ware structure. Tree-maps [20] enables one to quickly relate the associated met-
rics, the counter balance is that it provides little help when relations between
elements have their importance, as this is the case in our work.

Byelas and Telea [21] proposed a technique based on “splat texture” that
identity areas in a software architecture. The idea is to fill a contoured area
using this texture. This representation is efficient when dealing with scalability.
Their approach is complementary to our, and may be well combined.

7 Conclusions

Composition mechanisms as such defined in the Adore framework help de-
signers to build business process. Visualization techniques can then be used to
graphically represent the compositions, and support designers when they assess
their systems.

In this paper, we propose three visualizations intended to support designers’
understanding of compositions. These representation allow designers to identify
easily graphical patterns in their composition, and then identify key–points in
composed systems. These key–points can be used in different way (e.g., to define
unit tests, to catch designers attention on a dangerous situation). We illustrate
the scalability of the approach by visualizing the Cccms system. This large
system was initially defined to be a comparison referential for Aom techniques.
The different visualizations described in this paper are scalable enough to let us
represent in an understandable way all the artifacts of this case study.

We focus our work on static visualization of compositions as first–class enti-
ties. An interesting perspective of this work is to define new representation deal-
ing with composition conflict detection (e.g., conflict highlighting) or business–
process partnerships (e.g., execution bottleneck).

References

1. MacKenzie, M., Laskey, K., McCabe, F., Brown, P., Metz, R.: Reference Model
for Service Oriented Architecture 1.0. Technical Report wd-soa-rm-cd1, OASIS
(February 2006)

16 S. Mosser, A. Bergel, M. Blay–Fornarino

2. Peltz, C.: Web Services Orchestration and Choreography. Computer 36(10) (2003)
3. White, S.A.: Business Process Modeling Notation (BPMN). IBM. (May 2006)
4. OASIS: WS Business Process Exec. Lang. 2.0. Technical report, OASIS (2007)
5. Douence, R.: A Restricted Definition of AOP. In: European Interactive Workshop

on Aspects in Software (EIWAS). (September 2004)
6. Liu, J., Batory, D., Lengauer, C.: Feature Oriented Refactoring of Legacy Appli-

cations. In: Int. Conf. on Soft. Engineering (ICSE), Shanghai, China (May 2006)
7. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis Management Systems, A Case Study

for Aspect-Oriented Modeling. Requirements document for TAOSD special issue,
McGuill University & University of Luxembourg (September 2009)

8. Mosser, S., Blay-Fornarino, M., Riveill, M.: Web Services Orchestration Evolu-
tion: A Merge Process For Behavioral Evolution. In: 2nd European Conference on
Software Architecture (ECSA’08), Springer LNCS (September 2008)

9. Mosser, S., Blay-Fornarino, M., France, R.: Workflow Design using Fragment Com-
position (Crisis Management System Design through ADORE). Transactions on
Aspect-Oriented Software Development (TAOSD) (2010) 1–34 submitted.

10. Sarkar, M., Brown, M.H.: Graphical Fisheye Views of Graphs. In: CHI’92: Proc.
of the SIGCHI conf. on Human factors in computing sys., New York, NY, USA,
ACM (1992) 83–91

11. Lanza, M., Ducasse, S.: Polymetric views—a lightweight visual approach to reverse
engineering. Trans. on Soft. Engineering (TSE) 29(9) (September 2003) 782–795

12. Gı̂rba, T., Lanza, M.: Visualizing and characterizing the evolution of class hierar-
chies. In: WOOR 2004 (5th ECOOP Wkshp on OO Reengineering). (2004)

13. Vanderfesten, I., Cardoso, J., Mendling, J., Reijers, H.A., Van Der Aalst, W.M.:
Quality Metrics for Business Process Models. BPM and Workflow Handbook (2007)
179–190

14. Barais, O., Lawall, J., Le Meur, A.F., Duchien, L.: Safe Integration of New Con-
cerns in a Software Architecture. In: 13th Annual IEEE International Conference
on Engineering of Computer Based Systems (ECBS’06), Potsdam, Germany, IEEE
(March 2006)

15. Szyperski, C.: Independently Extensible Systems – Software Engineering Poten-
tial and Challenges. In: Proceedings of the 19th Australian Computer Science
Conference”, Melbourne, Australia (1996)

16. Pfeiffer, J.H., Gurd, J.R.: Visualisation-based tool support for the development
of aspect-oriented programs. In: AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, New York, NY, USA, ACM
(2006) 146–157

17. Barth, W.: Nagios: System and Network Monitoring. No Starch Press, San Fran-
cisco, CA, USA (2008)

18. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer-Verlag
(2006)

19. D’Ambros, M., Lanza, M.: Visual software evolution reconstruction. J. Softw.
Maint. Evol. 21(3) (2009) 217–232

20. Balzer, M., Deussen, O., Lewerentz, C.: Voronoi treemaps for the visualization of
software metrics. In: SoftVis ’05: Proceedings of the 2005 ACM symposium on
Software visualization, New York, NY, USA, ACM (2005) 165–172

21. Byelas, H., Telea, A.C.: Visualization of areas of interest in software architecture
diagrams. In: SoftVis ’06: Proceedings of the 2006 ACM symposium on Software
visualization, New York, NY, USA, ACM (2006) 105–114

	Visualizing and Assessing a Compositional Approach of Business Process Design
	Sebastien Mosser, Alexandre Bergel, Mireille Blay--Fornarino

