
REVERSE GENERICS
Parametrization After The Fact

Alexandre Bergel
PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile

http://www.bergel.eu

Lorenzo Bettini
Dipartimento di Informatica, Università di Torino, Italy

http://www.di.unito.it/˜bettini

Keywords: Generic Programming, Java Generics, C++ Templates

Abstract: By abstracting over types, generic programming enables one to write code that is independent from specific
data type implementation. This style is supported by most mainstream languages, including C++ with tem-
plates and Java with generics. If some code is not designed in a generic way from the start, a major effort is
required to convert this code to use generic types. This conversion is manually realized which is known to be
tedious and error-prone.
We propose Reverse Generics, a general linguistic mechanism to define a generic class from a non-generic
class. For a given set of types, a generic is formed by unbinding static dependencies contained in these types.
This generalization and generic type instantiation may be done incrementally. This paper studies the possible
application of this linguistic mechanism to C++ and Java and, in particular, it reviews limitations of Java
generics against our proposal.

1 Introduction

The concept of generic programming (Dos Reis
and Järvi, 2005), which has characterized functional
programming for several decades, appeared in main-
stream programming object-oriented languages such
as C++, only in the late 80s, where it motivated from
the beginning the design of the Standard Template Li-
brary (STL) (Musser and Stepanov, 1989; Musser and
Saini, 1996; Austern, 1998). Generic programming
was not available in the first versions of Java, and this
limited code reuse, by forcing programmers to resort
to unsafe operations, i.e., type casts. Generics are a
feature of the Java 1.5 programming language. It en-
ables the creation of reusable parameterized classes
while guaranteeing type safety.

In spite of the limitations of Java generics, type
parameterization allows the programmer to get rid of
most type down-casts they were forced to use before
Java generics; this also is reflected in part of the stan-
dard Java library which is now generic. However,
much pre-1.5 Java code still needs to be upgraded to
use generics. For example, a quick analysis on the
AWT Java library shows that some classes perform

more than 100 down-casts and up-casts and 70 uses
of instanceof. This examination reveals that in many
places the amount of up-casting subsequent down-
casting that is used almost makes the programs be-
have like dynamically typed code.

Note, that the need to make existing code generic
may arise also in languages where generic types were
already available. In particular, either a library or
a framework is designed in a type parametric way
from the very beginning, or the “conversion” must be
done manually, possibly breaking existing code. Sev-
eral proposals have been made that promote an auto-
matic conversion from non-generic code into generic
code (Duggan, 1999; von Dincklage and Diwan,
2004; Kiezun et al., 2007). These approaches involve
reverse-engineering techniques that infer the potential
type candidates to be turned into parameters. This pa-
per presents a different approach: instead of relying
on the programming environment to pick up type pa-
rameters, a programmer may create a generic class
starting from a non-generic one, by using a proper
language construct. To our knowledge, no previous
attempt to offer a language built-in mechanism to gen-
eralize classes has been proposed.



We propose to extend the way generics are ex-
pressed by defining a generic type (class or interface)
from a non-generic type definition. Our approach
consists of an extension to be applied to an existing
object-oriented programming language. However, in
this paper, we will investigate the possible applica-
tion of this extension to Java and C++. We will also
demonstrate how the implementation of generic types
in the language affects the usability of this new lin-
guistic extension. With this extension, programmers
can create generic classes and interfaces starting from
existing classes and interfaces by specifying the types
that need to be turned into generic parameters. We
call this linguistic mechanism Reverse Generics.

This approach is different from the above men-
tioned refactoring approaches since in our context
there will be no refactored code: the starting class will
continue to exist after it is used to create its generic
version. However, we believe that the refactoring
techniques in the literature could formulate a refac-
toring based on our reverse generics to actually im-
plement the refactoring.

The paper is organized as follows. Section 2
presents and illustrates Reverse Generics. Section 3
enumerates several typing issues due to the Java type
system with respect to generic programming. Sec-
tion 4 presents briefly related work and Section 5 con-
cludes and presents future work.

2 Reverse Generics

Reverse Generics is an extension for object-
oriented programming languages that enables a
generic class to be created starting from an existing
class, and a generic interface from an existing inter-
face. Some of the static type references contained
in the original class or interface are transformed into
type parameters in the resulting generic version. The
process of obtaining a generic class from a class def-
inition is called generalization. We consider general-
ization as the dual of the instantiation operation. We
refer to unbinding a type when references of this type
contained in the original class definition are not con-
tained in the generic.

Given a class name, ClassName, and a type name,
TypeName, the generic version of a class is denoted by
the following syntactic form:
ClassName>TypeName<

All references to TypeName contained in the class
ClassName are abstracted. A name is associated to the
abstract type in order to be concretized later on. Sev-
eral type names may be abstracted using the following
writing:

ClassName>TypeName1, . . . , TypeNamen<

The resulting generic class should then be as-
signed to a class definition, which depends on the
actual programming language (and in particular on
its syntax for parameterized types); thus, in Java we
would write:
class MyGenericClass<T extends TypeName> =

ClassName>TypeName<;

In C++ we would instead write
template<typename T>
class MyGenericClass<T> =

ClassName>TypeName<;

The class resulting from a reverse generic should
be intended as a standard class in the underlying lan-
guage. We could simply instantiate the type parame-
ters of a generic class and then create an object, e.g.,
new MyGenericClass<MyTypeName>();

However, there might be cases (e.g., when using
partial instantiation, Section 2) where it is useful to
simply instantiate a generic class and assign it another
class name; thus, we also consider this syntax:
class MyClass = MyGenericClass<MyTypeName>;

In the following, we informally describe and
illustrate Reverse Generics with several examples
resulting from an experiment we conducted on the
AWT graphical user interface Java library. The same
mechanism may be applied to C++ templates.

Class Generalization. The class EventQueue is a
platform-independent class that queues events. It re-
lies on AWTEvent, the AWT definition of event. The
code below is an excerpt of the class EventQueue:
public class EventQueue {

private synchronized AWTEvent getCurrentEventImpl() {
return (Thread.currentThread() == dispatchThread)

? ((AWTEvent)currentEvent.get()): null;
}
public AWTEvent getNextEvent()

throws InterruptedException {
...

}
public void postEvent(AWTEvent theEvent) {

...
boolean notifyID = (theEvent.getID() == this.waitForID);
...

}
...

}

In some situations, the EventQueue class may have
to be used with one kind of event, say KeyEvent. This
will significantly reduce the number of runtime down-
casts and ensure type safety when such a queue has to
be used.



By using reverse generics we can define the
generic class GEventQueue<T extends AWTEvent>
from the non-generic class EventQueue as follows:

class GEventQueue<T extends AWTEvent> =
EventQueue>AWTEvent<;

GEventQueue<T extends AWTEvent> is a generic
definition of EventQueue that contains a particular data
type, T. A type has to be provided to GEventQueue
in order to form a complete class definition. To sat-
isfy the Java type checker, a constraint has to be set
on T by enforcing it to be a subtype of AWTEvent.
For example, in the method postEvent(...), getID() is
invoked on an event. The getID() method is defined
in the class AWTEvent. Without the constraint on T,
GEventQueue<T> would be rejected by the Java com-
piler since it can not statically guarantee the presence
of getID().

The generic GEventQueue<T> resulting from the
snippet of code given above is equivalent to:

public class GEventQueue<T extends AWTEvent> {
private synchronized T getCurrentEventImpl() {

return (Thread.currentThread() == dispatchThread)
? ((T)currentEvent.get()): null;

}
public T getNextEvent() throws InterruptedException {

...
}
public void postEvent(T theEvent) {

...
boolean notifyID = (theEvent.getID() == this.waitForID);
...

}
...

}

References of AWTEvent have been replaced by the
type parameter T. GEventQueue is free from references
of the AWT event class definition. The queue may be
employed with KeyEvent then, a subclass of AWTEvent:

GEventQueue<KeyEvent> keyEventsQueue
= new GEventQueue<KeyEvent>();

keyEventsQueue.postEvent(new KeyEvent(...));
try {

KeyEvent event = keyEventsQueue.getNextEvent();
} catch(Exception e) {} // getNextEvent() is throwable

Interface Generalization. The mechanism for
classes described above may be applied to interfaces.
For example, the AWT ActionListener interface is de-
fined as follows:

public interface ActionListener extends EventListener {
public void actionPerformed(ActionEvent e);

}

This interface may be generalized with the follow-
ing declaration:

public interface GActionListener<T> =
ActionListener>ActionEvent<;

The benefit of this generalization is the ability to
reuse the interface ActionListener with a different event
API.

Incremental Generalization. A generic class ob-
tained using reverse generics may be generalized fur-
ther by unbinding other remaining static type refer-
ences. For instance, let us consider the class Event-
DispatchThread, which is a package-private AWT class
which takes events off the EventQueue and dispatches
them to the appropriate AWT components. Event-
DispatchThread is used in the EventQueue class as fol-
lows:
public class EventQueue {

...
private EventDispatchThread dispatchThread;

final void initDispatchThread() {
synchronized (this) {

if (dispatchThread == null &&
!threadGroup.isDestroyed()) {

dispatchThread = (EventDispatchThread)
AccessController.doPrivileged(new PrivilegedAction()

{...}}}}
In the situation where some assumptions may have

to be made on the type of the event dispatcher, the
GEventQueue<T extends AWTEvent> may be general-
ized further:
public class
GenericEventQueue<Dispatcher extends EventDispatchThread>

=GEventQueue>EventDispatchThread<;

The generic GenericEventQueue has two type pa-
rameters, T and Dispatcher. Note that the defini-
tion above is equivalent to the generic class obtained
by unbinding both the AWTEvent and the EventDis-
patchThread type in one single step:
public class GenericEventQueue

<T extends AWTEvent,
Dispatcher extends EventDispatchThread>

=EventQueue>AWTEvent, EventDispatchThread<;

The class GenericEventQueue<T,Dispatcher> can be
instantiated by providing the proper two type param-
eters.

At the current stage of reverse generic, Incremen-
tal Generalization assumes that the two parameters
are distinct types. If not, then the generalization
cannot be applied.

Partial Instantiation. The generic GenericEven-
tQueue described above may be partially instantiated
by fulfilling only some of its type parameters. For ex-
ample, an event queue dedicated to handle key events
may be formulated:



public class GKeyEventQueue =
GenericEventQueue<KeyEvent>;

One type argument has still to be provided to
GKeyEventQueue, i.e., the one corresponding to the
type parameter Dispatcher. A complete instantiation
may be:

public class OptimizedKeyEventQueue
= GKeyEventQueue<OptimizedEventDispatchThread>;

OptimizedKeyEventQueue has all the type parame-
ters instantiated and can be used to create objects:

OptimizedKeyEventQueue keyEventsQueue
= new OptimizedKeyEventQueue();

keyEventsQueue.postEvent(new KeyEvent(...));
try {

KeyEvent event = keyEventsQueue.getNextEvent();
} catch(Exception e) {} // getNextEvent() is throwable

3 Dealing with the language features

Reverse generics is a general mechanism that can
be used to extend an existing programming language
that already provides a generic programming mech-
anism. However, since this mechanism relies on the
existing generic programming features provided by
the language under examination, we need to investi-
gate whether such existing mechanisms are enough
to create a complete “reversed generic” class. This
section summarizes the various technical limitations
of Java generics and their impact on reverse generics.
In this respect, C++ does not seem to put limitations
for reverse generics. A broader comparison between
the generic programming mechanisms provided by
Java and C++ may be found in the literature (Ghosh,
2004; Batov, 2004).

Class instantiation. A crucial requirement in the
design of the addition of generic in Java 1.5 was back-
ward compatibility, and in particular to leave the Java
execution model unchanged. Erasure (Odersky and
Wadler, 1997; Bracha et al., 1998) is the front-end
that converts generic code into class definitions. It
behaves as a source-to-source translation. Because of
erasure, List<Integer> and List<String> are the same
class. Only one class is generated when compiling
the List<T> class. At runtime, those two instantia-
tions of the same generic List<T> are just Lists. As a
result, constructing variables whose type is identified
by a generic type parameter is problematic.

Let’s consider the following code:

class PointFactory {
Point create() { return new Point(); }

}

One might want to generalize PointFactory the fol-
lowing way:
class Factory<T> = PointFactory>Point<;

The corresponding reversed generics class would
correspond to the following generic class:
class Factory<T> {

T create() { return new T(); }
}

However, this class would not be well-typed in
Java: a compile-time error is raised since new Point()
cannot be translated into new T() for the reason given
above. As a result, the class PointFactory cannot be
made generic in Java. Enabling a generic type pa-
rameter to be instantiated is considered to be a hard
problem (Allen and Cartwright, 2006). A proposal
has been made to eliminate such restrictions (Allen
et al., 2003), in order to let generic types appear in
any context where conventional types appear.

On the contrary, in C++, the above code for
Factory<T> (with the corresponding C++ template
syntax adjustments) is perfectly legal, and instantia-
tion of generic types is also used in the STL itself.

Static methods. Generic class type parameters
cannot be used in a static method1. A generic method
has to be used instead.

For example, the class EventQueue contains the
static method eventToCacheIndex(...):
private static int eventToCacheIndex(AWTEvent e) {

switch(e.getID()) {
case PaintEvent.PAINT: return PAINT;
case PaintEvent.UPDATE: return UPDATE;
case MouseEvent.MOUSE MOVED: return MOVE;
case MouseEvent.MOUSE DRAGGED: return DRAG;
default: return e instanceof PeerEvent ? PEER : -1;

}
}

This method is generalized in GenericEventQueue
as the following:
private static <U extends AWTEvent>

int eventToCacheIndex(U e) {
...

}

The type parameter U cannot be equal to T since
eventToCacheIndex(...) is a static method. This means
that eventToCacheIndex(...) may be employed with a
type T1 even if GenericEventQueue has been invoked
with a type T2. For example, we might have:
class GEventQueue<T extends AWTEvent>

= EventQueue>AWTEvent<;...
GEventQueue<KeyEvent> keyEventQueue

1http://java.sun.com/docs/books/tutorial/-
extra/generics/methods.html



= new GEventQueue<KeyEvent>();
GEventQueue.eventToCacheIndex(new ActionEvent(...));

The expression GEventQueue<KeyEvent> instantiates
the generic with the type KeyEvent. However, the static
method eventToCacheIndex is performed with an Action-
Event, a subclass of AWTEvent living in a different class
hierarchy than KeyEvent. While this does not under-
mine type safety, we believe that it might represent an
abnormal situation with respect the initial design in-
tentions. This issue suggests an extension of reverse
generic to handle static methods as a possible further
investigation.

On the contrary, C++ deals with generic class type
parameters used in static methods, as in the following
code (the implicit type constraint is that the operator
<< is defined for T, which is the case for the basic
types we use in main):

template<typename T>
class ClassWithStaticMethod {

T myField;
public:

// constructor initializing the field
ClassWithStaticMethod(const T& t) : myField(t) {}

static void m(T t) {
cout << ”t is: ” << t << endl;

}
};

int main() {
ClassWithStaticMethod<int>::m(10);
ClassWithStaticMethod<float>::m(10.20);
ClassWithStaticMethod<string>::m(”foobar”);

// create an object of class ClassWithStaticMethod<string>
// passing a string argument
ClassWithStaticMethod<string> c(”value”);
c.m(”hello”);
c.m(10); // compile ERROR!

}

Note also how the C++ compiler correctly detects
the misuse of a static method in the last line: the static
method of a class where the generic type is instan-
tiated with string is being used with another type (int)2.

Abstract class. Turning a type contained in a
method signature into a type parameter may make the
resulting generic class abstract in Java. Consider the
following two class definitions:

abstract class AbstractCell {
public abstract void set (Object obj);
public abstract Object get ();

}

2A static method invoked on an instance corresponds to
the static method invoked on the instance’s class.

class Cell extends AbstractCell {
private Object object;
public void set (Object obj) { this.object = obj; }
public Object get () { return this.object; }

}

One may want to write the following generic to
make Cell operate on Number instead of Object:
class GCell<T extends Number> = Cell>Object<;

However, GCell is abstract since set(Object) is not
implemented. The solution is to make AbstractCell
generic by abstracting Object. In C++, since it
does not type check a generic class, but only its
instantiations (i.e., generated classes), the situation is
different, as illustrated in the next section.

Method erasure uniqueness. Consider the pre-
vious code excerpt of AbstractCell and Cell. Let us as-
sume one wants to make Cell operate on any arbitrary
type instead of Object. Naively, one may write the fol-
lowing definition:
class GCell<T> = Cell>Object<;

It is the same definition of GCell provided above
without the upper type. This definition results in a
compile error. The reason is that the method set has
two different erasures without being overriding. This
is a further limitation of the Java type erasure.

To fully understand why, consider the following
example. This code is rejected by the Java compiler
(with the error “GCell is not abstract and does not
override abstract method set(java.lang.Object) in Ab-
stractCell’’):
class GCell<T> extends AbstractCell {

private T object;
public void set (T obj) { this.object = obj; }
public T get () { return this.object; }

}

This is due to the Java erasure mechanism which
prevents two methods from having the same erasure if
one does not override the other. The method set(T) in
GCell<T> and set(Object) in AbstractCell have the same
erasure. The former does not override the latter, but
overloads it. An illustration of this limitation is:
class MyClass<U,V> {

// These two overloaded methods are ambiguous
void set (U x) { }
void set (V x) { }

}

Defining an upper bound of the type T will enforce
this overloading and removes the method erasure am-
biguity. A compilable version could be:
class MyClass<U extends Object, V extends java.awt.Frame> {

void set (U x) { }
void set (V x) { }

}



Let us now consider a possible reversed generic
GCell generated in C++, which could correspond to
the following one:

class AbstractCell {
public:

virtual void set(int o) = 0;
virtual int get() = 0;

};

template<typename T>
class GCell: public AbstractCell {

T object;
public:

GCell(T o) : object(o) {}
virtual void set(T o) { object = o; }
virtual T get() { return object; }

};

int main() {
AbstractCell *cell = new GCell<int> (10);
cout << cell->get() << endl;
cell->set(20);
cout << cell->get() << endl;
AbstractCell *cell2 =

new GCell<string> (”foo”); // compile ERROR
}

C++ correctly considers GCell<int> as a concrete
class since the abstract methods of the base class
are defined3. However, if we tried to instantiate
GCell<string> we would get a compiler error, since
GCell<string> is considered abstract: in fact, the
get/set methods in the abstract class are not imple-
mented (GCell<string> defines the overloaded version
with string, not with int).

Primitive types. Arithmetic operators in Java
have to be used in a direct presence of numerical types
only. As an example, the + and - operators can only
be used with primitive types and values. The auto-
boxing mechanism of Java makes it operate with the
types Integer, Float.

For example, the following generic method is il-
legal since Number objects cannot be arguments of +
and -:

public class T<U extends Number> {
public int sum (U x, U y) {

return x + y;
}

}

Instead, the following declaration of sum is legal:

public class T<U extends Integer> {
public int sum (U x, U y) {

return x + y;

3To keep the example simple we used int as a type, since
no Object is available in C++.

}
}

This means that one can reverse generic a class
by abstracting the type Integer into a parameter U ex-
tends Integer. However, this would not be highly useful
since Integer is a final class, sum can be applied only
with the type Integer.

The use of arithmetic operations prevents the
operand types from being turned into type parameters
in a generic way. This is not a problem in C++ thanks
to operator overloading (a feature that is still missing
in Java), as also illustrated in the following section.

Operators. Java does not provide operator over-
loading, but it implements internally the overloading
of +, for instance, for Integer and String. Thus, the two
classes are legal in Java:

public class IntSum {
public static Integer sum (Integer x, Integer y) {

return x + y;
}

}

public class StringSum {
public static String sum (String x, String y) {

return x + y;
}

}

But there is no way to extract a generic version,
since there is no way to write a correct type con-
straint4.

This is not a problem in C++ thanks to operator
overloading. However, we think that this problem is
not strictly related to the absence of operator over-
loading in Java. Again, It is due to type erasure and
how the type-checking is performed in Java. C++
does not perform type-checking on the generic class:
upon type parameter instantiation it type-checks the
resulting (implicitly) instantated class; thus, we can
write in C++ such a generic class with method sum,
which will have only some accepted (well-typed) in-
stantiations, i.e., those that satisfy the implicitly in-
ferred constraints (in our case, the operator + must
be defined on the instantiated type). On the contrary,
Java type-checks the generic class itself, using the
explicit constraint, which in our case, cannot be ex-
pressed in such a way that it is generic enough.

4This might be solved, possibly, with a union type
(Igarashi and Nagira, 2007) constraint such as, e.g., extends
Integer∨String.



4 Related Work

To our knowledge, no programming language
construct to build a generic class from a complete
class definition has been presented in the literature.
This section presents the closest work to Reverse
Generics.

Reverse engineering parameterized types. A
first attempt to automatically extract generic class def-
initions from an existing library has been conveyed by
Duggan (Duggan, 1999), well before the introduction
of generics into Java.

Beside the reverse engineering aspect, Duggan’s
work diverges from Reverse Generics regarding
downcast insertion and parameter instantiation. Dug-
gan makes use of dynamic subtype constraint that
inserts runtime downcast. Parameterized type may
be instantiated, which requires some type-checking
rules for the creation of an object: the actual type
arguments must satisfy the upper bounds to the
formal type parameters in the class type. Moreover,
the version of generics presented in his work with
PolyJava differs from Java 1.5 in several important
ways that prevent his results from being applied to
Java generics.

Modular type-based reverse engineering.
Kiezun et al. proposes a type-constraints-based
algorithm for converting non-generic libraries to add
type parameters (Kiezun et al., 2007). It handles the
full Java language and preserves backward compat-
ibility. It is capable of inferring wildcard types and
introducing type parameters for mutually-dependent
classes.

Reverse engineering approaches ensure that a
library conversion preserves the original behavior
of the legacy code. This is a natural intent since
such a conversion is exploited as a refactoring. The
purpose of Reverse Generics is to replace static
types references contained in existing classes with
specialized ones. Section 3 shows that a generic
obtained from a complete class may have to be set
abstract. This illustrates that the original behavior
of the complete class may not be preserved in the
generic ones. Method signatures may be differently
resolved in the generic class.

Type construction polymorphism. A well-
known limitation of generic programming in main-
stream languages is to not be able to abstract over
a type constructor. For instance, in List<T>, List is
a type constructor, since, given an argument for T,
e.g., Integer, it builds a new type, i.e., List<Integer>.

However, the type constructor List itself cannot be ab-
stracted (this is a well known limitation of first-order
parametric polymorphism). Thus, one cannot pass a
type constructor as a type argument to another type
constructor. Moors, Piessens and Odersky (Moors
et al., 2008) extend the Scala language (Odersky et al.,
2008) with type construction polymorphism to allow
type constructors as type parameters. Thus, it is pos-
sible not only to abstract over a type, but also over a
type constructor; for instance, a class can be param-
eterized over Container[T]5, where Container is a type
constructor which is itself abstracted and can be in-
stantiated with the actual collection, e.g., List or Stack,
which are type constructors themselves.

Reverse generics act at the same level of first-
order parametric polymorphism, thus, it shares the
same limitations, e.g., the following reverse generic
operation cannot be performed:

class MyClass {
List<Integer> mylist;

}

class MyClassG = MyClass>List<;

An interesting extension is to switch to the higher
level of type constructor polymorphim, but this is an
issue that still needs to be investigated, and, most im-
portant, it should be experimented with a program-
ming language that provides type constructor poly-
morphism, and, with this respect, Scala seems the
only choice compared to Java and C++.

5 Conclusion

Genericity in programming languages appeared in
the beginning of the 70s. It gained a large adoption
by being adopted in mainstream languages. All the
generic mechanisms we are aware of enable a param-
eterization only if the code has been prepared for be-
ing parametrized. This paper goes against this implic-
itly established mindset. Reverse generics promote a
generalization for code that has not been prepared for
it.

Since highly parameterized software is harder to
understand (Gamma et al., 1995), we may think of a
programming methodology where a specific class is
developed and tested in a non-generic way, and then
it is available to the users via its “reversed” generic
version (thus, in this case, we really need the non
generic version for testing purposes, so the code must
not be refactored). For example, C++ debuggers may
have problems when setting a breakpoint for debug

5Scala uses [] instead of <>.



purposes within a template from a source file: they
may either miss setting the breakpoint in the actual
instantiation desired or may set a breakpoint in ev-
ery place the template is instantiated. Another well-
known problem with programming using templates
is that usually the C++ compilers issue quite long
compilation errors in case of problems with template
usage and in particular with template instantiations;
these errors are also hard to understand due to the
presence of parametric types.

Thus, reverse generics can be used as a develop-
ment methodology, not only as a way to turn previous
classes into generic: one can develop, debug and test
a class with all the types instantiated, and then expose
to the “external world” the generic version created
through reverse generics. Provided that an explicit
dependency among reversed generic classes and the
original ones is assumed (e.g., by using makefiles),
the reversed generic version of a class will be auto-
matically kept in sync with the original one.

Classes obtained with reverse generics are not re-
lated to the original classes. We think that this is
the only sensible design choice since generic types
and inheritance are basically two distinguished fea-
tures that should not be mixed; indeed the main design
choices of Java generics tend to couple generics and
class based inheritance (again, for backward compat-
ibility), relying on type erasure, and, as we discussed
throughout the paper, this highly limits the expressiv-
ity and usability of generics in a generic programming
methodology. C++ keeps the two above features unre-
lated; in particular, the STL library basically does not
rely on inheritance at all (Musser and Stepanov, 1989;
Musser and Saini, 1996; Austern, 1998), leading to a
real usable generic library (not to mention that, avoid-
ing inheritance and virtual methods also leads to an
optimized performance).

We currently described reverse generics in a very
informal way by describing a surface syntax and its
application to Java and C++. We plan to investigate
the applicability of reverse generics also to other pro-
gramming languages with generic programming ca-
pabilities such as, e.g., C# and Eiffel (Meyer, 1992).

As a future work, we will seek a stronger and
deeper theoretical foundation. The starting point
could be Featherweight Java (Igarashi et al., 2001),
a calculus for a subset of Java which was also used
for the formalization of Java generics. Alternatively,
we might use the framework of (Siek and Taha, 2006),
which, working on C++ templates that provide many
more features than Java generics, as we saw through-
out the paper, seem to be a better candidate for study-
ing the advanced features of reverse generics.

REFERENCES

Allen, E., Bannet, J., and Cartwright, R. (2003). A First-
Class Approach to Genericity. In Proc. of OOPSLA,
pages 96–114. ACM.

Allen, E. E. and Cartwright, R. (2006). Safe instantiation in
generic java. Sci. Comput. Program., 59(1-2):26–37.

Austern, M. H. (1998). Generic Programming and the STL:
using and extending the C++ Standard Template Li-
brary. Addison-Wesley.

Batov, V. (2004). Java generics and C++ templates. C/C++
Users Journal, 22(7):16–21.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P.
(1998). Making the future safe for the past: adding
genericity to the Java programming language. In Proc.
of OOPSLA, pages 183–200. ACM.

Dos Reis, G. and Järvi, J. (2005). What is generic program-
ming? In Proc. of LCSD.

Duggan, D. (1999). Modular type-based reverse engineer-
ing of parameterized types in java code. In Proc. of
OOPSLA, pages 97–113. ACM.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley.

Ghosh, D. (2004). Generics in Java and C++: a comparative
model. ACM SIGPLAN Notices, 39(5):40–47.

Igarashi, A. and Nagira, H. (2007). Union Types for Object
Oriented Programming. Journal of Object Technol-
ogy, 6(2):31–52.

Igarashi, A., Pierce, B., and Wadler, P. (2001). Feather-
weight Java: a minimal core calculus for Java and GJ.
ACM TOPLAS, 23(3):396–450.

Kiezun, A., Ernst, M. D., Tip, F., and Fuhrer, R. M. (2007).
Refactoring for parameterizing java classes. In Proc.
of ICSE, pages 437–446. IEEE.

Meyer, B. (1992). Eiffel: The Language. Prentice-Hall.

Moors, A., Piessens, F., and Odersky, M. (2008). Generics
of a higher kind. In Proc. of OOPSLA, pages 423–438.
ACM.

Musser, D. R. and Saini, A. (1996). STL Tutorial and Ref-
erence Guide. Addison Wesley.

Musser, D. R. and Stepanov, A. A. (1989). Generic pro-
gramming. In Gianni, P. P., editor, Proc. of ISSAC,
volume 358 of LNCS, pages 13–25. Springer.

Odersky, M., Spoon, L., and Venners, B. (2008). Program-
ming in Scala. Artima.

Odersky, M. and Wadler, P. (1997). Pizza into Java: Trans-
lating theory into practice. In Proc. of POPL, pages
146–159. ACM.

Siek, J. and Taha, W. (2006). A semantic analysis of C++
templates. In Proc. of ECOOP, volume 4067 of LNCS,
pages 304–327. Springer.

von Dincklage, D. and Diwan, A. (2004). Converting Java
classes to use generics. In Proc. pf OOPSLA, pages
1–14. ACM.


