
Assessing the Quality of your Software with MoQam

Jannik Laval, Alexandre Bergel, Stéphane Ducasse
RMoD Team, INRIA, Lille, France

firstname.lastname@inria.fr

1. INTRODUCTION
Over the last decade, the need for quality in software has increased.
Several quality models have been proposed [3, 5, 9]. These models
emphasize the need to have quality checks while developing a soft-
ware program. As far as we are aware of, no model to assess quality
of existing software have reached a significant acceptance.

This paper describes the Qualixo quality model. Qualixo is an
open-source quality model developed by several companies and
pushed further in the context of the Squale research project. Ac-
cording to Marinescu and Ratiu [?], Qualixo can be classified as a
Factor-Criteria-Metrics quality model. Qualixo is being applied in
large companies such as AirFrance or PSA. It uses measurements
to assess software quality. These measurements cover a number
of different aspects of a software, including specification accuracy,
programming rules, and test coverage. Qualixo has been origi-
nally implemented on top of Eclipse. In this paper we present Mo-
Qam (Moose Quality Assessment Model), the implementation of
the Qualixo quality model in the Moose open-source reengineering
environment.

This paper is organized as follows: Section 2 presents the model
and its four components. Section 3 describes how the model is
implemented in Moose. Section 4 offers two examples of notation
and a real test of MoQam. Section 5 gives a brief overview of the
related works, and finally, Section 6 concludes.

2. OVERVIEW OF THE QUALIXO MODEL
The model defined by Qualixo is composed of four elements, each
having a different granularity. Figure 1 presents the four levels of
the Qualixo model. Starting from the most fine-grained element it
is composed of:

• a metric is a measurement directly computed from the pro-
gram source code. The current implementation provides 17
metrics.

• a practice assesses one quality of a model. A practice is as-
sociated to one or more metrics. 50 practices are currently

implemented.

• a criteria assesses one principle of software quality by weight-
ing a set of practices. Such a principle could be safety, sim-
plicity, or modularity. For now, 15 criteria are implemented.

• a factor represents the highest quality assessment. A factor
is computed over a set of weighted criteria. 6 factors are
currently available and are explained in a following section.

aMetric

aPractice

aCriterion

aFactor

aMetricaMetric

aPracticeaPractice

... ...

Figure 1: Meta-model of Qualixo Model.

Metrics. A metric is a measurement on a source code. it is a
function that returns a numerical value which evaluate a source
code. As such, metrics are considered as low level. Literature on
metrics provides a significant amount of metrics such as the well
known Depth Inheritance Tree (DIT, INH) and Specialization Index
(SIX) [4,6,7]. Figure 2 shows the different information collected to
fully represent a metric. It is composed by an acronym, a name and
a list of alternative names (a metric may have several name), a for-
mulae referencing a function object, a version number (the version
number refers to possible different implementations of the same
metrics), a reference pointing to the articles precisely defining the
metrics, possible metrics that could be used to replace the current
one, a reference source and their associated results against which
the metric can be tested for non-regression, supportedBy lists the
list of tools implementing the metrics.

Practices. A practice is a composition of metrics that weights
and scales the metric’s value down to make it range between 0 and
3. By convention, 3 is a good mark meaning that the software un-
der analyses does it well for the given metric. A practice may be
associated to one or more metrics.

1

acronym
name
alternateNames
version
formula
definedInArticles
supportedBy

Metric

substituableBy

JUnit,
Source codevalidatedOn

name
version
formula
ponderation
isDiscrete

Practice

usedBy

usedBy

Figure 2: Meta model for metrics.

The practice formula is defined in two different ways: either by a
continuous function, or by a discrete function using metric thresh-
olds. For example, a discrete function is used in practice Inheri-
tance Size. It is based on Depth Inheritance Tree (DIT) [7].

Value is 0 if DIT > 7
Value is 1 if SIX > 6
Value is 2 if SIX > 5
Value is 3 if SIX =< 5

A practice is a formula based on metrics. Most of the time, the for-
mula weights different metrics it is combining to emphasize a par-
ticular characteristic of the software under analysis. A practice may
be discrete or not. A discrete function is used by certain practices
to highlight component which are badly noted. It imposes thresh-
olds which should not be exceeded whereas a continuous function
is linear.

As an illustration, consider the practice Coupling Class Efferent. It
is based on the Coupling Between Object (CBO) metric [1]. This
formula returns a value between 0 and 3:

FAMIXClass>>notationOfComponentEfferentCoupling
| result |
result:= ((10- (self sureReferencedClasses size))/3) exp.
(result < 0) ifTrue: [^ 0].
(result > 3) ifTrue: [^ 3].
^ result

Another interesting practice is Documentation. In our implementa-
tion, this practice is associated with FAMIXMethod entity since it is
based on metrics Number of Lines of Code which counts the lines of
codes (and is equivalent to LOC) and Number Of Comments which
counts the number of lines of comments.

Quality Criteria. Practices are gathered and balanced to de-
fine criteria values. A criteria groups practices by categories. For
example, the criteria level of interdependence groups practices ef-
ferent coupling class and related coupling class because these two
practices show dependencies between classes.

Quality Factor. A factor gives a mark, called a quality factor,
between 0 and 3 for an average of criteria. Note that the criteria

used by a factor must be coherent and, for example, measures the
same entities. A factor is the highest level of evaluation. There-
fore, a factory quality is computed for the whole program and may
potentially covers all elements of the meta-model.

Six quality factors are currently defined in Qualixo:

• Functional capacity represents the adequacy between the needs
and functionalities offered.

• Architecture corresponds to the technical architecture qual-
ity.

• Maintainability represents the facility to correct residual er-
rors.

• Capacity to evolve measures the capacity to add functionali-
ties.

• Capacity to re-use represents faculty to re-use the code arti-
facts.

• Reliability represents the stability of the program.

Thus, a complete assessment of a software system results in 6 qual-
ity factor. A quality factor below 1 is interpreted as a failure in
meeting its quality objective. Between 1 and 2, the quality objec-
tive is considered as achieved with reserve. Above 2, the objective
is considered as achieved.

Applying the Qualixo model on a given software system cannot be
fully automated. Some metrics cannot be automatically extracted
from the code, and thus require human intervention. Typically, met-
rics related to the documentation fall into this category.

3. IMPLEMENTATION
MoQam is the partial implementation of the Qualixo model on
top of the Moose reengineering environment [2, 8] based on the
FAMIX source code meta-model (See Figure 3). Only metrics that
can be automatically computed are covered by our implementation.
Therefore, practices, criteria and factors related to these software
metrics are provided by our implementation (9 practices, 4 criteria,
a part of 2 factors).

Our implementation enriches FAMIX element classes: class related
metrics and practices are implemented as extension in FAMIXClass,
method related metrics and practices in FAMIXMethod, package re-
lated metrics and practices in FAMIXPackage.

Moose comes with a large set of metrics. MoQam benefits from
them by mapping each MoQam metric into a Moose one. As factors
and criteria are application level aggregates, they are implemented
in the class MooseModel.

As an example, consider the practice Inheritance Size. It aggregates
one metric: DIT, which is weighted by a discrete function as shown
in ncInheritance, and then is weighted by npInheritance. The prac-
tice does an average of the weighting function and returns a result
between 0 and 3. The implementation is the following:

FAMIXClass>>DIT
^ self superclassHierarchy size

2

1..*

1..*

1..*

1..*

Factor

Criteria

PracticeAuto PracticeManual

characterize

1..*

1..*
characterize

used by

Source code

External Tool

substituableBy

name
language
metricsProposedByTool

Interface
acronym
name
alternateNames
version
formula
definedInArticles
supportedBy

Metric

name
version
formula
ponderation
isDiscrete

Practice

validatedOn

1..1

1..1

1..* 1..*use

isCalledBy

use

Figure 3: Qualixo meta-model implementation in FAMIX.

FAMIXClass>>notationOfComponentInheritance
(self dit > 7) ifTrue:[ˆ 0].
(self dit > 6) ifTrue:[ˆ 1].
(self dit > 5) ifTrue:[ˆ 2].
^ 3

FAMIXClass>>notationOfPracticepInheritance
^ (20 ** ((self notationOfComponentInheritance) negated))

MooseModel>>practiceInheritanceSize
| practice result |
practice:= self allClasses inject: 0 into:

[:first:each | first + each notationOfPracticepInheritance].
result:= practice / self allClasses size.
^ ((result log) / (20 log)negated)

4. CASE STUDIES
We apply the Qualixo model to two large software systems: Moose
(170 Classes) and ArgoUML (1654 Classes). Yet, just some prac-
tices and criteria are implemented.

Moose. This is a test of MoQam Implementation on the package
Moose. Just some practices are tested here:

result for practiceAfferentCoupling 1.47
result for practiceEfferentCoupling 1.04
result for practiceDocumentation 0
result for practiceInheritanceSize 0.83
result for practiceMethodsNumber: 3
result for practiceMethodsSize: 0
result for practiceSpaghettiCode: 0

Here, we can say:

• Links between classes are acceptable (practiceAfferentCou-
pling is equal to 1.47 and practiceEfferentCoupling is equal
to 1.04)

• There is little or no documentation (practiceDocumentation)
in methods.

• The depth inheritance tree is bad (practiceInheritanceSize
less than 1). When we look the inheritance tree of MooseC-
ore, we can notice that some classes have a hierarchy size
higher than 6 (like all classes which inherit from FAMIXAb-
stractNamedEntity). The DIT of the class FAMIXAbstract-
NamedEntity is 5, because DIT is calculated from the class
Object. So this is clearly an indication that the metric should
be interpreted since we know that the inheritance hierarchy
of Moose and in particular the FAMIX model is good and
optimal.

• The number of methods for a class is good (practiceMethod-
sNumber).

• But the size of methods and its complexity is high (prac-
ticeMethodsSize and practiceSpaghettiCode).

Here, results show mainly that this is less documentation and it is
necessary to add this. The result

ArgoUML. This is a test of MoQam Implementation on ArgoUML.
Just some practice are tested here:

result for practiceAfferentCoupling: 3.0
result for practiceEfferentCoupling: 3.0
result for practiceDocumentation: 0
result for practiceInheritanceSize: 0.3541
result for practiceMethodsNumber: 0.0012
result for practiceMethodsSize: 0
result for practiceSpaghettiCode: 0

We can say that just links between classes are good. The rest has
bad notation : there is no or little documentation, the inheritance
tree is high, the number, the size and the complexity of methods is
high.

Then criteria can be computed: the criterion criteriaInterdepen-
danceLevel is an average of practiceAfferentCoupling and practice-
EfferentCoupling. Thus its result is 3.0, the level of independence
of ArgoUML is very good. And the criterion criteriaSimplicity
is an average of practiceSpaghettiCode, practiceMethodsNumber
and PracticeMethodSize. Thus its result is 0, the simplicity of Ar-
goUML is very bad.

This list shows that we can improve the software. According to
the results, things to do is : first, to add more documentation in
methods and to review the number and the size of methods and
third to analysis the inheritance tree because it is high.

This analysis can be used by managers or engineers to improve the
process of reengineering of a software.

5. RELATED WORK
Swat4j. Swat4j1 is a quality model for Java. It comes with about
30+ Metrics and about 100+ Industry Standard Best Practice Rules.
Swat4j is designed based on the principles of ISO 9126-1 (Quality
Model) and ISO 9126-3 (Software Product Quality, Internal Met-
rics).
1http://www.codeswat.com

3

http://www.codeswat.com

Hierarchical model. The Quality Model for Object-Oriented De-
sign (QMOOD) model in use has lower-level design metrics de-
fined in terms of design characteristics, and quality is assessed as an
aggregation of the model’s individual high-level quality attributes.
These high-level attributes are assessed using a set of empirically
identified and weighted object-oriented design properties [?].

QMOOD involves four levels (L1 through L4), and three mappings
(L12, L23, L34) used to connect the four levels. While defining the
levels involves identifying design quality attributes, quality carry-
ing design properties, object-oriented design metrics, and object-
oriented design components, defining the mapping involves con-
necting adjacent levels by relating a lower level to the next higher
level.

QMOOD assesses for each component its quality. Squale provides
globals appreciations in terms of factors.

Detection strategies. Marinescu and Ratiu [?] raised the follow-
ing question How should we deal with measurement results? After
having pinpointed few limitations in Factor-Criteria-Metric mod-
els (e.g., obscure mapping of quality criteria onto metrics, poor
capacity to map quality problems to causes), they introduce detec-
tion strategies as a generic mechanism for analyzing a source code
model using metrics. The use of metrics in the detection strategies
is based on mechanisms of filtering and composition. A filtering
operation is characterized with thresholds and extremities. Com-
position operators are and, or, butnotin.

Based on the detection strategy mechanism, a new quality model
is proposed, called Factor-Strategy. This model uses a decompo-
sitional approach, but after decomposing quality in factors, these
factors are not anymore associated directly with a bunch of num-
bers. Instead, quality factors are now expressed and evaluated in
terms of detection strategies, which are the quantified expressions
of the good-style design rules for the object-oriented paradigm.

6. CONCLUSION
This paper describes MoQam, an implementation of a quality model
for software named Qualixo. An implementation is also described
and two case studies have been realized. Results of these case stud-
ies are encouraging to continue to develop it.

This approach has three positive points. First, MoQam uses four
levels of granularity, which offers different scopes for an analysis.
Second, the weighting to calculate the practices allow bad coding
style to be highlighted. Third, these results may be used in a dash-
board.

Future work will focus on four points: first, we will weight prac-
tices to calculate criteria. That allows the same purpose that the
weighting of practices: we will be able to highlight bad program-
ming style. Second, we will integrate some metrics to compare and
replace metrics which can be debatable (like LCOM, which can be
replaced by TCC and LCC (Tight and Loose Class Cohesion), for
example). The third thing is to integrate the manual practices of
the model to have all factors functional. We project to experiment
this model on several package which we wish to study. The Fourth
point is to allow to personalize criteria (which practices used) and
factors (which criteria used) according to project.

7. REFERENCES

[1] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[2] S. Ducasse, T. Gîrba, M. Lanza, and S. Demeyer. Moose: a
collaborative and extensible reengineering environment. In
Tools for Software Maintenance and Reengineering, RCOST /
Software Technology Series, pages 55–71. Franco Angeli,
Milano, 2005.

[3] R. L. Glass. Building Quality Software. Prentice-Hall, 1997.
[4] B. Henderson-Sellers. Object-Oriented Metrics: Measures of

Complexity. Prentice-Hall, 1996.
[5] H.-W. Jung, S.-G. Kim, and C.-S. Chung. Measuring software

product quality: A survey of iso/iec 9126. IEEE Softw.,
21(5):88–92, 2004.

[6] S. H. Kan. Metrics and Models in Software Quality
Engineering. Addison Wesley, 2002.

[7] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, 1994.

[8] O. Nierstrasz, S. Ducasse, and T. Gîrba. The story of Moose:
an agile reengineering environment. In Proceedings of the
European Software Engineering Conference (ESEC/FSE’05),
pages 1–10, New York NY, 2005. ACM Press. Invited paper.

[9] D. Spinellis. Code Reading The Open Source Perspective.
Addison-Wesley, 2003.

4

	Introduction
	Overview of the Qualixo Model
	Implementation
	Case Studies
	Related Work
	Conclusion
	References

