
Classboxes: Supporting Unanticipated Variation Points in the
Source Code

Alexandre Bergel
Hasso-Plattner Institut, University of

Potsdam, Germany
Alexandre.Bergel@hpi.uni-

potsdam.de

Claus Lewerentz
Software and Systems Engineering

Research Group, Technical
University of Cottbus, Germany

cl@tu-cottbus.de

Liam O’Brien
National ICT Australia, Canberra,

Australia &
LERO, University of Limerick,

Ireland
Liam.OBrien@nicta.com.au

Abstract
Software product lines refer to engineering techniques for
creating a portfolio of similar software systems from a
shared set of software assets in a controlled way. Managing
variability is the key issue of software product line practice.
Modelling variation points is largely addressed by a selec-
tion of linguistic constructs and modelling techniques (e.g.,
design pattern, macro, configuration files). New constraints
and industrial requirements often result in the emergence of
new variation points. The success of the evolution of a prod-
uct line depends on its capability to absorb unanticipated
variation points.

This paper presents the classboxes programming con-
struct to support unanticipated variation point in the soft-
ware source code. Classboxes offer a visibility mechanism
that controls the scope of an evolution step and limits it only
to the part of a program that needs to be affected by this
evolution. Benefits of classboxes are illustrated on an arcade
game maker product line.

1. Introduction
Product line engineering is a widely used approach for ef-
ficient development of whole portfolios of software prod-
ucts [20]. This approach defines a core asset base as a col-
lection of artefacts that have been designed specifically for
use across the portfolio [4]. Although it is desirable to have
a core asset generic enough that it does not require adapta-
tion across products, in many cases adaptations are required.
Variation mechanism used in core assets help to control the
required adaptations [3].

[Copyright notice will appear here once ’preprint’ option is removed.]

Variation points are explicitly defined in the core asset to
enable variations. For instance, class inheritance and class
templates are frequently used to model variations [4]. In
this case, variation points are therefore explicit by means
of abstract classes and method (in case of inheritance) and
template definitions.

Explicitly designating location in a program as variation
points in the core asset raises a serious issue regarding the
inevitable evolution of a product. All the variation points
have to be known and anticipated while the core asset is
being defined [5]. As a result, addition of new variation
points after the completion of the core asset may come at
high cost. Associating variation points to a set of static
locations goes against the fact that software evolves in an
unpredictable way [8, 14].

Classboxes [7] is a mechanism that supports evolution of
product lines by dissociating the core asset with variation
point declarations. It is realised as an extension of the Java
programming language1. A classbox is a modular unit that
contains class and method definitions. A classbox may refine
another classbox.

In this paper we present how classboxes may be applied
to implement product lines and model evolution. The idea
is that each classbox represents a software product version.
Classboxes advocate the use of a visibility mechanism to
limit the propagation of changes to a scope, which delimits
parts of a software intended to benefit from those changes.

The paper is organised as follow. Section 2 illustrates a
situation where creating an unanticipated variant comes at a
high cost. This section briefly introduces the Arcade Game
Maker example. Section 3 describes the classboxes mecha-
nism, gives its properties and shows how the problems solves
the extension problem. Section 4 presents an application of
classboxes in a product line. Section 5 points to some related
work, and Section 6 concludes the paper.

1 java.sun.com

1 2007/9/20

mailto:Alexandre.Bergel@hpi.uni-potsdam.de
mailto:Alexandre.Bergel@hpi.uni-potsdam.de
mailto:cl@informatik.tu-cottbus.de
mailto:Liam.OBrien@nicta.com.au
http://java.sun.com

2. Unanticipated Software Evolution
2.1 The Arcade Game Maker
The Arcade Game Maker [9] is a product line that allows for
creating simple arcade games. It encompasses three games2.
Each game is a one-player game in which the player con-
trols, to some degree, the moving objects. The objective is to
score points by hitting stationary obstacles. The games range
from low obstacle count to high and will be available on a
variety of platforms.

widgets
motion

 Brickles Pong Bowling

rules
pieces

behaviour
environment

rules'
pieces'

behaviour'
environment'

rules''
pieces''

behaviour''
environment''

}
}
} Commonalities

Variation points

Products

Figure 1. The Arcade Game Maker product line.

As illustrated in Figure 1, the commonalities in this prod-
uct line are: (i) every game has a set of sprites, (ii) every
game has a set of rules, (iii) all the games involve motion.
The variations are: (i) rules of the game, (ii) types and num-
bers of pieces involved, (iii) behaviour of those pieces, and
(iv) physical environment in which the game operates.

Brickles, Pong and Bowling are the three products issued
from the Arcade Game Maker product line.

2.2 Unanticipated Variation Point
Powerful graphic processors are becoming ubiquitous. For
instance, most new cellphones include an advanced graph-
ics display and provide enough processing power to enable
three dimensional presentation of games. Business require-
ments change unexpectedly after initial development and it
emerges that the Arcade Game Maker should benefit from
the lastest innovation in graphics hardware. One important
requirement is that old games must still be obtainable from
future versions of the product line.

widgets,
motion,
display

 Brickles PongBowling

...
2D

...
2D

...
2D

3DBrickles 3DPong 3DBowling

...
3D

...
3D

...
3D

Figure 2. Ideal evolution of the Arcade Game Maker prod-
uct line (bold strokes represent addition).

The ideal solution is to have a variation point related to
the display, a kind of switch that allows for two or three
dimensional rendering. Figure 2 illustrates this situation.

2 www.sei.cmu.edu/productlines/ppl/

However, incorporating this kind of evolution may come at
high cost:

• Core asset’s commonalities have to be modified, which
may impact all the products in an unpredictable way.

• Forcing the existing products (i.e., Brickles, Bowling,
Pong) to use the new display variation point with tradi-
tional programming technologies may lead to some se-
vere refactorings that are difficult to realise.

In the following sections we will present classboxes and
show how they provide an approach to deal with evolution
in product lines.

3. Classboxes in a Nutshell
A classbox is a modular construct supporting software re-
finements to be defined in a non-invasive way. As a running
example, we will use a contrived but compact and represen-
tative case study.

Modular unit. A classbox is a kind of module that contains
class definitions and class refinements. It defines a names-
pace of classes. The following example defines a set of
classes contained in a classbox Commonalities:

classbox Commonalities;
public abstract class Component {

abstract void draw();
}

public class Point extends Component {
int x;
int y;
public void draw () {

/* Some code */
}

}

public class Rectangle extends Component {
int x1, y1;
int x2, y2;
public void draw () {

/* Some code */
}

}

From a syntactic point of view, the difference between
Java and the language used in this example is the intro-
duction of the classbox keyword. The code above defines a
classbox named Commonalities that contains three classes,
Component, Point, and Rectangle. These classes are meant
to represent two dimensional graphical widgets.

Refinements. Contrary to Java packages, definitions con-
tained in a classbox are not fixed, they may be refined into
some new versions. Classes defined in a classbox may be im-
ported into another classbox. Moreover, they may be refined
in the importing classbox. Imports are specified by the im-
port keyword and refinements by the refine keyword. From
the point of view of the importing classboxes, there is no dis-

2 2007/9/20

http://www.sei.cmu.edu/productlines/ppl/

tinction between classes that are imported and those that are
locally defined. The following classbox refines classes de-
fined in Commonalities by adding variables and redefining
the draw() method.

classbox 3DCommonalities;
import Commonalities.*;

refine Component {
Texture texture;

}

refine Point {
/* Class members (like variables x, y) contained
in Commonalities.Point are accessible */

int z;
public void draw () {

/* New code that use the variables x, y, z and
texture*/

}
}

refine Rectangle {
/* Class members (like variables x1, y1, x2, y2) contained
in Commonalities.Point are accessible */

int z1, z2;
public void draw () {

/* Code that use the variables x1,y1, z1,
x2,y2,z2 and texture */

}
}

The class Component is refined with a new variable, tex-
ture of type Texture. Definition of the Texture class is not
showed in order to keep the example concise. The class Point
is refined with a z variable and a draw() method. In a similar
fashion, Rectangle is refined with two additional variables
(z1 and z2) and a redefined method draw().

Multiple class versions. A classbox defines a particular ver-
sion of a group of classes. In the example above, two ver-
sions of Component, Point, and Rectangle coexist: Common-
alities offers a set of two dimensional graphical widgets, and
the newly defined 3DCommonalities a set of textured three
dimensional widgets.

The class definitions offered by 3DCommonalities are ob-
tained from a concatenation and replacement of class mem-
bers definitions from Commonalities with class refinements.
The definition of 3DCommonalities below is rigourously
equivalent to the one presented below:

classbox 3DCommonalities;
public abstract class Component {

Texture texture;
abstract void draw();

}

public class Point extends Graphics {
int x;
int y;
int z;
public void draw () {

/* New code that use the variables x, y, z and
texture*/

}
}

public class Rectangle extends Graphics {
int x1, y1, z1;
int x2, y2, z2;
public void draw () {

/* Code that use the variables x1,y1 z1,
x2, y2, z2 and texture */

}
}

Commonalities

draw()

Component

draw()
x, y

Point

draw()
x1, y1, x2, y2
Rectangle

3DCommonalities

draw()
texture
Component

draw()
z

Point

draw()
z1, z2
Rectangle

Pong

Component

Point

Rectangle

3DPong

Component

Point

Rectangle

Pong 3DPong

Figure 3. Several clients may rely on different versions of
the commonalities.

Since several versions of the same group of classes coex-
ist in the same system, clients may rely on different versions
of a common library. Figure 3 illustrates this situation. The
classbox Pong imports the original definition of the widgets,
while 3DPong imports the refined widgets from 3DCom-
monalities.

Commonalities

draw()
x, y

Point

createPoint()

Factory

return new Point()

3DPong

Point

new Factory().createPoint()
=> 3d point

3DCommonalities

draw()
z

Point

Factory

Figure 4. The class Factory is locally rebound in the
3DPong classbox.

Local rebinding. Local class definitions have precedence
over the imported definitions. Figure 4 gives an example of a
local rebinding: the class Factory is imported in 3DCommon-
alities without being refined. New points, however, obtained
from a factory in this classbox will have the refinements de-
fined in 3DCommonalities.

3 2007/9/20

The local rebinding is a mechanism that puts the “most
recent version” of a class in use. By most recent version
we mean the class definition that is visible in the current
classbox.

4. Classboxes in the Arcade Game Maker
Product Line

widgets,
motion

Brickles Pong Bowling

rules'
pieces'

behaviour'
environment'

rules''
pieces''

behaviour''
environment''

3D
Widgets

<refinement>

3DBrickles 3DPong 3DBowling

rules'
pieces'

behaviour'
environment'

rules''
pieces''

behaviour''
environment''

rules
pieces

behaviour
environment

rules
pieces

behaviour
environment

Figure 5. Preferred evolution of the Arcade Game Maker
product line (bold strokes represent addition).

A classbox-based approach to incorporate the new varia-
tion point is to obtain a second set of commonalities which
offers the 3D functionality. Figure 5 represents the new ver-
sion of the product line. The import between classes is rep-
resented in the model with a <refinement> link. It denotes a
new version of the commonalities.

WidgetsMotion

Rules Behaviour

Environment

Brickles

BricklesGame

Commonalities

Widgets

Rules

...

3DWidgets

RefinedCommonalities

3DBrickles

Widgets

Rules

...

BricklesGame

Figure 6. Excerpt of the new classbox-based architecture of
the product line.

Figure 6 shows an excerpt of the new version of the Ar-
cade Game Maker product line using a classbox-based ar-
chitecture. The commonality is defined by a set of five class-
boxes Motion, Widgets, Rules Behaviour and environment (in
the Commonalities box). The classbox 3DCommonalities re-
fines the widgets as illustrated in Figure 3. The 3DBrickes

classbox imports the definitions from the 3DBrickes class-
box and imports the 3DWidgets from RefinedCommonalities.
Within the 3DBrickes classbox the class BricklesGames (im-
ported from Brickles) is locally rebound with definitions vis-
ible in 3DBrickles.

Core asset’s commonalities have been refined with some
3D widgets, however those refinements are not invasive. The
original set of variations are left untouched by the 3D refine-
ments: they are kept separate from the original commonali-
ties.

5. Related Work
This section covers works related to Classboxes in a context
of software product line.

Design Pattern. A Design Pattern is a general repeatable
solution to a commonly occurring problem in software de-
sign. It is a description or template for how to solve a prob-
lem that can be used in many different situations [11,12]. By
means of hooks, most design patterns enable addition and re-
placement of behaviour without any modification of the base
code. For example, after the edification of an abstract syn-
tax tree (AST), any object may traverse a reified program as
soon as the protocol defined in the Visitor Pattern is properly
implemented. And thus, without any further requirement on
the AST.

Although the capability of handling unanticipated evolu-
tion of design patterns is widely recognised, the way how
such evolution may occur has to be foreseen and explicitly
planned. Whereas a new AST traversal strategy may be eas-
ily implemented, the addition of a new AST node results in
an adaptation of existing visitors. Such an adaptation may
turn out to come at a high cost if the invariant of the original
version has to be preserved.

Aspect-oriented programming. Several applications of
AOP techniques to product lines have been studied [1]. For
example, Liu et al. [16] present the benefit of AOP to handle
crosscutting variability. They identified desired character-
istics of aspect-oriented modelling techniques for product
lines.

Concern Hierarchies [17] facilitate the design of aspect-
oriented software product lines by supporting derivation of
class hierarchies, aspects, and their dependency relations.

Middleware specialisation is also a research topic for
which AOP brings significant contributions [13]. Although
AOP is primarily used for separation of concerns, it may be
used to select the specific set of features needed by a product
line. Aspect weaving is subsequently used to specialise the
middleware.

One major advantage of classboxes over traditional AOP
languages, is the non-invasiveness obtained from the scoping
mechanism.

4 2007/9/20

AspectJ3 proposes inter-type as a mechanism to define
class members in a compilation unit different than the one
that define the class. For example, methods part of a class C
may be defined in an aspect, a location different than where
C is defined. This is similar to Classboxes, however, AspectJ
does not handle conflict and method redefinition. Thanks
to the scoping mechanism of Classboxes, class refinements
lives in different scope, which results in no-conflict.

Feature-oriented programming. FOP studies the modular-
ity of features in program families [6]. The idea is to build
software by composing features. Features are basic blocks
and first-class entities in design and implementation. Fea-
tures may refine other features in an incremental way [2].

Mixin layers [21], AHEAD [6] and FeatureC++ 4 are
probably the most representative FOP implementation. Mixin
Layers express layered design in terms of collaborations and
roles. A collaboration is typically modelled with a class and
a role as an inner class. An inner mixin-class may incre-
mentally refine another role located in another collabora-
tion. The Algebraic Hierarchical Equations for Application
Design (AHEAD) model generalises equational specifica-
tions to multiple programs and multiple representations. It
expresses the code representation of an individual program
as an equation. FeatureC++ is a proprietary C++ language
extension based on mixin layers.

Feature-oriented programming involve sophisticated tech-
niques to manipulate program representations (typically
source code) as a set of artefacts. Different versions of
the source code represent multiple variations of a program.
However, FOP allows one version of a program to be present
when running. Prior the compilation phase, a flattening-like
algorithm is applied to reduce the variations of source code
into one complete system. On the contrary, Classboxes pre-
serve information related to different version, which enables
multiple versions of a group of classes to be present at exe-
cution time.

Virtual classes. Virtual classes were originally developed
for the language BETA [15], primarily as a mechanism for
generic programming [18] rather than for expression pro-
gram variation. Keris [22, 23], Caesar [19], and gbeta [10]
offer virtual classes, where method and class lookup are uni-
fied under a common lookup algorithm. In a similar way that
a method is looked up according to an instance, a class is
looked up according to an instance (i.e., an encapsulating
class). This implies that the outer class to be instantiated. On
the contrary, a Classbox cannot be instantiated. Classboxes
does not introduce a class lookup, but enhanced the method
lookup algorithm.

The extended version of Java proposed by Classboxes is
fully compatible with previous version of Java. As a result,

3 eclipse.org/aspectj
4 wwwiti.cs.uni-magdeburg.de/iti db/fcc

any existing Java program will be accepted by our compiler.
This is an important difference with virtual classes since
virtual classes usually necessitates the base program to be
annotated with classes that are virtual. For example, CaesarJ
requires a class to be defined with the cclass to be virtual. On
the contrary, Classboxes may operate on any class without
any prior preparation.

6. Conclusion
Programming languages traditionally used to construct soft-
ware do not provide means to model evolution and variation
in a satisfactory way. Although constructs such as module,
package, inheritance, and macro increase reuse and mainte-
nance in software product lines, unanticipated software vari-
ation points is not properly addressed.

The work presented in this paper advocates the use of
a visibility mechanism to deal with unanticipated variation
points. Classboxes enable incorporation of new variation
points in a product line without disrupting existing produc-
tions.

As future works, we plan to conduct larger case studies
and assess more accurately benefits from using a visibility
mechanism for software product lines.

Acknowledgments. We would like to thank Matthias Uflacker
for his review of an earlier draft of this paper.

We gratefully acknowledge the financial support of Sci-
ence Foundation Ireland (under grant no. 03/CE2/I303 1).

References
[1] M. Anastasopoulos and D. Muthig. An evaluation of aspect-

oriented programming as a product line implementation
technology. In In Proceedings of the 8th International
Conference on Software Reuse, volume 3107 of LNCS, pages
141–156. Springer-Verlag, 2004.

[2] S. Apel, T. Leich, and G. Saake. Aspectual mixin layers:
aspects and features in concert. In ICSE ’06: Proceeding of
the 28th international conference on Software engineering,
pages 122–131, New York, NY, USA, 2006. ACM Press.

[3] F. Bachmann and L. Bass. Managing variability in software
architectures. In ACM SIGSOFT Symposium on Software
Reusability, pages 126–132, 2001.

[4] F. Bachmann and P. C. Clements. Variability in software
product lines. CMU/SEI-2005-TR-012, Carnegie Mellon
University, Software Engineering Institute, 2005.

[5] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,
B. Ramesh, and A. Vilbig. A meta-model for representing
variability in product family development. In Proceedings of
Europäischen Workshop zur Produktfamilien-Entwicklung
(PFE’03), volume 3014 of Lecture Notes in Computer
Science, pages 66–80. Springer-Verlag, 2004.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. In Proceedings of the 25th international

5 2007/9/20

http://eclipse.org/aspectj
http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc

conference on Software engineering, pages 187–197. IEEE
Computer Society, 2003.

[7] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Con-
trolling the scope of change in Java. In Proceedings of 20th
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’05), pages
177–189, New York, NY, USA, 2005. ACM Press.

[8] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel.
Towards a taxonomy of software change. Journal on Software
Maintenance and Evolution: Research and Practice, pages
309–332, 2005.

[9] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, MA, 2002.

[10] E. Ernst. gbeta – a Language with Virtual Attributes,
Block Structure, and Propagating, Dynamic Inheritance.
PhD thesis, Department of Computer Science, University of
Aarhus, Århus, Denmark, 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[12] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson. Design
patterns: Abstraction and reuse of object-oriented design.
In O. Nierstrasz, editor, Proceedings ECOOP ’93, volume
707 of LNCS, pages 406–431, Kaiserslautern, Germany, July
1993. Springer-Verlag.

[13] D. Kaul and A. Gokhale. Middleware specialization using
aspect oriented programming. In ACM-SE 44: Proceedings
of the 44th annual Southeast regional conference, pages 319–
324, New York, NY, USA, 2006. ACM Press.

[14] G. Kniesel, J. Noppen, T. Mens, and J. Buckley. The first
workshop on unanticipated software evolution (use 2002).
In Proceedings of ECOOP 2002 Workshop Reader, volume
2548 of LNCS. Springer Verlag, 2002.

[15] B. B. Kristensen, O. L. Madsen, B. Moller-Pedersen, and
K. Nygaard. The BETA programming language. In B. Shriver
and P. Wegner, editors, Research Directions in Object-
Oriented Programming, pages 7–48. MIT Press, Cambridge,
Mass., 1987.

[16] J. Liu, R. Lutz, and H. Rajan. The role of aspects in modeling
product line variabilities. In Proceedings of the 1st Workshop
on Aspect-oriented Product Line Engineering (AOPLE’ 06),
Portland, OR, USA, 2006. In conjunction with GPCE’06.

[17] O. S. D. Lohmann and W. Schröder-Preikschat. Concern
hierarchies. In Proceedings of the 1st Workshop on Aspect-
oriented Product Line Engineering (AOPLE’ 06), Portland,
OR, USA, 2006. In conjunction with GPCE’06.

[18] O. L. Madsen and B. Moller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented programming.
In Proceedings OOPSLA ’89, ACM SIGPLAN Notices,
volume 24, pages 397–406, Oct. 1989.

[19] M. Mezini and K. Ostermann. Conquering aspects with
Caesar. In Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 90–99. ACM
Press, 2003.

[20] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, Berlin Heidelberg New York, 2005.

[21] Y. Smaragdakis and D. Batory. Mixin layers: an object-
oriented implementation technique for refinements and
collaboration-based designs. ACM TOSEM, 11(2):215–255,
Apr. 2002.

[22] M. Zenger. Evolving software with extensible modules.
In International Workshop on Unanticipated Software
Evolution, Malaga, Spain, June 2002.

[23] M. Zenger. Type-safe prototype-based component evolution.
In Proceedings ECOOP 2002, volume 2374 of LNCS, pages
470–497, Malaga, Spain, June 2002. Springer Verlag.

6 2007/9/20

	Introduction
	Unanticipated Software Evolution
	The Arcade Game Maker
	Unanticipated Variation Point

	Classboxes in a Nutshell
	Classboxes in the Arcade Game Maker Product Line
	Related Work
	Conclusion

