
Information Technology

Classboxes – Koontrollierte Sichtbarkeit von Klassenerweiterungen

Classboxes – Controlling Visibility of Class Extensions

Dr. Alexandre Bergel: Trinity College Dublin, 2 Dublin, Ireland
Tel: +353-877449165, E-Mail: Alexandre.Bergel@cs.tcd.ie
Dr. Alexandre Bergel is currently a Research Fellow at LERO – the Irish Software Engineering
Research Center, and Trinity College Dublin, in Ireland. He designed and conceived the
classbox model system during his PhD. In 2006 Dr. Bergel received the Ernst Denert Software
Engineering Award .

Keywords: Software engineering, module system, software evolution

MS-ID: Alexandre.Bergel@cs.tcd.ie 28th February 2007

Heft: 46/3 (2007)



Abstract
Unanticipated changes to complex software systems can introduce anomalies such as duplicated code,
suboptimal inheritance relationships and a proliferation of run-time downcasts. Refactoring to eliminate
these anomalies may not be an option, at least in certain stages of software evolution.

A class extension is a method that is defined in a module, but whose class is defined elsewhere.
Class extensions offer a convenient way to incrementally modify existing classes when subclassing is
inappropriate. Unfortunately existing approaches suffer from various limitations. Either class extensions
have a global impact, with possibly negative effects for unexpected clients, or they have a purely local
impact, with negative results for collaborating clients. Furthermore, conflicting class extensions are either
disallowed, or resolved by linearization, with subsequent negative effects.

To solve these problems we present classboxes, a module system for object-oriented languages that
provides for behavior refinement (i.e. method addition and replacement). Moreover, the changes made
by a classbox are only visible to that classbox (or classboxes that import it), a feature we call local
rebinding.

We present an experimental validation in which we apply the classbox model to both dynamically and
statically typed programming languages. We used classboxes to refactor part of the Java Swing library,
and we show two extensions built on top of classboxes which are (i) runtime adaptation with dynamically
classboxes and (ii) expressing crosscutting changes.

Zusammenfassung
Unerwaretete Veraenderungen in komplexen Systemen fuehren zu Anomalien wie z.B. dupliziertem Code,
suboptimalen Vererbungsbeziehungen und die Zunahme von runtime downcasts. Refactoring bietet nicht
immer eine Loesung, zumindest nicht in allen Stufen der Sofware Evolution.

Eine Klassenerweiterung ist eine Methode, die in einem Modul deklariert, aber deren Klasse an an-
derer Stelle definiert ist. Klassenerweiterungen sind eine elegante Moeglichkeit um bestehende Klassen
inkrementell zu veraendern wenn Veerbung nicht anwendbar ist. Existierende Ansaetze zeigen einige
Nachteile auf. So haben zum Beispiel Klassenerweiterungen globale Einfluesse mit negativen Folgen fure
die Benutzer dieser Klasse.

Als Loesungsansatz stellen wir classboxes vor, ein Modulsystem fuer objekt-orientierte Sprachen das
Verhaltensverfeinerungen anbietet, d.h., Redefinition und Zusatz von Methoden. Die Veraenderungen
einer classbox sind nur fuer diese oder andere classboxes, die diese importieren,sichtbar. Dieses bezeichnen
wir als sogenanntes local rebinding.

Wir praesentieren eine experimentelle Bewertung in der wir das classbox Prinzip auf statisch und
dynamisch typisierte Programmiersprachen anwenden. Teile der Java Swing Bibliothek wurden mit
diesem Prinzip refactored. Zusaetzlich stellen wir zwei Erweiterungen vor, die auf dem classbox Prinzip
aufbauen, die Adaption einer Anwendung mit dynamischen classboxen und die Definition von crosscutting
Ausdruecken.

Widmung
D.3.3 [Programming Languages]: Language Constructs and Features; D.1.5 [Programming Lan-
guages]: Object-oriented Programming

2



It is well-established that
object-oriented programming lan-
guages gain a great deal of their
power and expressiveness from
their support for the open/closed
principle [Mey88]: classes are
closed in the sense that they can
be instantiated, but they are also
open to incremental modification
by inheritance.

Nevertheless, classes and in-
heritance alone are not adequate
for expressing many useful forms
of incremental change. For exam-
ple, modern object-oriented lan-
guages introduce modules or pack-
ages as a complementary mecha-
nism to structure classes and con-
trol visibility of names.

We focus on a particular
technique, known as class ex-
tensions, which addresses the
need to extend existing classes
with new behaviour. Small-
talk [GR89], CLOS [Pae93],
Objective-C [PW88], and more
recently MultiJava [CLCM00]
and AspectJ [KHH+01] are ex-
amples of languages that support
class extensions. Class extensions
preserve class identity when ex-
tended, whereas class inheritance
implies creation of new classes.
Class extensions offer a good so-
lution to the dilemma that arises
when one would like to modify
or extend the behaviour of an
existing class, and subclassing is
inappropriate because that spe-
cific class is referred to, but, one
cannot modify the source code
of the class in question. A class
extension can then be applied to
that specific class.

Classboxes are a modular ap-
proach to class extensions that
solve traditional composition is-
sues of class extensions such as
conflict (two class extensions that
refer to the same methods but
with different implementations for
example). A classbox is a kind
of module with three main char-
acteristics:

– It is a unit of scoping in
which classes, global variables and
methods are defined. Each en-
tity belongs to precisely one class-
box, namely the one it which it
is first defined, but an entity can
be made visible to other class-
boxes by importing it. Methods
can be defined for any class visible
within a classbox, independently
of whether that class is defined or
imported. Methods defined (or re-
defined) for imported classes are
called class extensions.

– A class extension is locally
visible to the classbox in which it
is defined. This means that the
extension is only visible to (i) the
extending classbox, and (ii) other
classboxes that directly or indi-
rectly import the extended class.

– A class extension supports
local rebinding. This means that,
although extensions are locally
visible, their effect extends to all
collaborating classes. A classbox
thereby determines a namespace
within which local class exten-
sions behave as though they were
global. From the perspective of a
classbox, the world is flattened.

The model of classboxes ex-
hibits several properties related to
the visibility of class extensions:

– Locality of changes – Class
extensions of an imported class
are visible to the refining clasbox
and to other classboxes that im-
port this extended class. The ex-
tended class is a new version of the
original class that coexists in the
same system.

– Precedence of redefinition
– Redefined class members have
precedence over the imported def-
inition.

– Coexistence of several class
versions – Extending a class con-
ceptually defines a new version of
it.

Classboxes provide an efficient
mechanism to define change and
model evolution of software pro-
gram. Consider, for example,

the development of Swing, a GUI
package for Java that was built
on top of the older AWT package.
Because subclassing is used to in-
corporate Swing-related changes,
serious drawbacks such as dupli-
cated code (e.g., 43% of JWindow

is duplicated in JFrame) and mis-
matches between the original and
the extended class hierarchy (left
part of Figure 1).

Swing has been refactored into
the SwingCB classbox (right part
of Figure 1). SwingCB imports
the classes Frame, Window, Compo-

nent, and Button from the AwtCB

classbox. Those classes are ex-
tended with the features from the
original JFrame, JWindow, JCom-

ponent, and JButton classes. For
instance, the imported Component

class is extended with some new
variables (e.g., accessibleContext,
components) and new methods
(e.g., update(), add(Component)).
Inheritance relationships defined
in AwtCB are preserved in the
SwingCB classbox. For instance,
in SwingCB, Frame is a subclass
of Window, itself a subclass from
Component. As a result, the code
duplication in the original Swing
has been removed in the classbox
version of Swing.

The work on classboxes made
numerous significant contribu-
tions.

– First-class environment
module calculus: Understanding
the multitude of module systems
requires a common foundation in
which differences between vari-
ous semantics are expressed. We
define a module calculus for this
purpose. Because the notion of
namespace is implicitly associated
to module, this calculus makes the
notion of environment a first-class
entity [BDN05a].

– Analysis of a large library :
An analysis of a large and widely
used Java library (Swing) is used
to define criteria for a better
mechanism to deal with changes.

3



javax.swing

Component

Window Button
Frame

Container

JButton

java.awt

JFrame
accessibleContext
rootPane
update()
setLayout()
setRootPane()
setContentPane()

JComponent
accessibleContext
update()

JWindow
accessibleContext
rootPane
update()
setLayout()
setRootPane()
setContentPane()

SwingCB

Component

Window

Button

Frame

Container

Button

Frame

AwtCB

Window

getAccessibleContext()
setLayout()
setRootPane()
setContentPane()
...

rootPane

update()

 Component
accessibleContext

add(Component)

components

remove(Component)
...

a) Using Java packages b) Using classboxes

import
CB

Classbox CB extending class 
C with a method m

C
m

legend

Bild 1: Swing is a GUI framework built on top of AWT. a) Swing contains large portion of duplicated code (gray
portion) and inheritance defined in Swing mismatches the one defined in AWT (e.g., an AWT frame is an AWT
window, however a Swing frame is not a Swing window). b) The classbox version of Swing removes all the code
duplication because the classbox SwingCB defines a new view of AwtCB instead of using inheritance.

This analysis points out code du-
plications, broken inheritance and
explicit type checking, which jus-
tifies the need of having at the lan-
guage level constructs to express
changes and how they can be ap-
plied [BDN05b].

– Scoped class extensions:
Scoping facilities to deal with
changes by means of class
extensions are provided by
means of a new module system,
classboxes [BD05b, BDW03a,
MBCD05].

– Strategies to efficiently im-
plement scoped class extensions:
A description of three imple-
mentations of classboxes is pro-
posed. Two of them are based
on the Smalltalk dialect Squeak
whereas the third one is made
in Java: (i) modification of the
Squeak virtual machine, (ii) use
of reflective capabilities of Squeak,
and (iii) manipulating source code
and reifying method call stack

in Java. Benchmarks are pro-
vided for each of these implemen-
tations [BDW03b,BDNW05].

– Dynamic classboxes: Uni-
form and expressive mechanism
to support crosscutting changes
made of class extensions [BD05a]

Classboxes triggered numer-
ous interest among the com-
munity in programming lan-
guages [LS05,LS06,BHCC06a].

Literatur

[BDW03b] Alexandre Bergel,
Stéphane Ducasse, and Roel
Wuyts. Classboxes: A mini-
mal module model supporting
local rebinding. In Proceedings
of JMLC 2003 (Joint Mod-
ular Languages Conference),
volume 2789 of LNCS, pages
122–131. Springer-Verlag,
2003. Best Award Paper.

[BDW03a] Alexandre Bergel,

Stéphane Ducasse, and Roel
Wuyts. The Classbox module
system. In Proceedings of
the ECOOP ’03 Workshop
on Object-oriented Language
Engineering for the Post-Java
Era, July 2003.

[BDNW05] Alexandre Bergel,
Stéphane Ducasse, Oscar
Nierstrasz, and Roel Wuyts.
Classboxes: Controlling
visibility of class exten-
sions. Computer Languages,
Systems and Structures,
31(3-4):107–126, May 2005.

[BDN05b] Alexandre Bergel,
Stéphane Ducasse, and Oscar
Nierstrasz. Classbox/J: Con-
trolling the scope of change
in Java. In Proceedings of
Object-Oriented Program-
ming, Systems, Languages,
and Applications (OOP-
SLA’05), pages 177–189, San

4



Diego, CA, USA, 2005. ACM
Press.

[BDN05a] Alexandre Bergel,
Stéphane Ducasse, and Oscar
Nierstrasz. Analyzing module
diversity. Journal of Universal
Computer Science, 2005. To
appear.

[BD05b] Alexandre Bergel and
Stéphane Ducasse. Supporting
unanticipated changes with
Traits and Classboxes. In
Proceedings of Net.ObjectDays
(NODE’05), pages 61–75, Er-
furt, Germany, September
2005.

[BD05a] Alexandre Bergel and
Stéphane Ducasse. Scoped
and dynamic aspects with
Classboxes. RSTI – L’Objet
(programmation par aspects),
11(3):53–68, 2005.

[BHCC06a] Alexandre Bergel,
Robert Hirschfeld, Siobhàn
Clarke, and Pascal Costanza
Aspectboxes – Controlling the
Visibility of Aspects. In Pro-
ceedings of the International
Conference on Software and
Data Technologies (ICSOFT
2006), September 2006.

[CLCM00] Curtis Clifton,
Gary T. Leavens, Craig
Chambers, and Todd Mill-
stein. MultiJava: Modular
open classes and symmetric
multiple dispatch for Java.
In OOPSLA 2000 Conference
on Object-Oriented Program-
ming, Systems, Languages,
and Applications, pages
130–145, 2000.

[LS05] Markus Lumpe, and
Jean-Guy Schneider Class-
boxes – An Experiment in
Modeling Compositional
Abstractions using Explicit
Contexts In Proceedings
of ESEC ’05 Workshop on
Specification and Verification
of Component-Based Systems
(SAVCBS ’05), September
2005.

[GR89] Adele Goldberg and Dave
Robson. Smalltalk-80: The
Language. Addison Wesley,
1989.

[KHH+01] Gregor Kiczales, Erik
Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and
William G. Griswold. An
overview of AspectJ. In Pro-
ceeding ECOOP 2001, number

2072 in LNCS, pages 327–353.
Springer Verlag, 2001.

[LS06] Markus Lumpe, and Jean-
Guy Schneider On the Inte-
gration of Classboxes into C#
In Proceedings of the 5th Inter-
national Symposium on Soft-
ware Composition (SC 2006),
March 2005.

[Mey88] Bertrand Meyer. Object-
oriented Software Construc-
tion. Prentice-Hall, 1988.

[MBCD05] Florian Minjat,
Alexandre Bergel, Pierre
Cointe, and Stéphane
Ducasse. Mise en symbiose
des traits et des classboxes :
Application à l’expression des
collaborations. In Proceedings
of LMO 2005, volume 11,
pages 33–46, Bern, Switzer-
land, 2005.

[Pae93] Andreas Paepcke. User-
level language crafting. In
Object-Oriented Programming
: the CLOS perspective, pages
66–99. MIT Press, 1993.

[PW88] Lewis J. Pinson and
Richard S. Wiener. Objective-
C. Addison Wesley, 1988.

5


