
Controlling the Scope of Change in Java with Classboxes

Alexandre Bergel

LERO &
Distributed Systems Group, Trinity College Dublin, Ireland

Abstract. Introducing changes in complex software systems that were antici-
pated can introduce anomalies such as duplicated code, suboptimal inheritance
relationships and a proliferation of run-time downcasts. Refactoring to eliminate
these anomalies may not be an option, at least in certain stages of software evo-
lution. Classboxes are modules that restrict the visibility of changes to selected
clients only, thereby offering more freedom in the way unanticipated changes may
be implemented, and thus reducing the need for convoluted design anomalies. In
this paper we demonstrate how classboxes can be implemented in statically-typed
languages like Java. We also present an extended case study of Swing, a Java GUI
package built on top of AWT, and we document the ensuing anomalies that Swing
introduces. We show how Classbox/J, a prototype implementation of classboxes
for Java, is used to provide a cleaner implementation of Swing using local refine-
ment rather than subclassing.

1 Introduction

Programming languages traditionally assume that the world is consistent. Although dif-
ferent parts of a complex system may only have access to restricted views of the system,
the system as a whole is assumed to be globally consistent. Unfortunately this means
that unanticipated changes may have far-reaching consequences that are not good for
the general health of the system. Consider, for example, the development of Swing, a
GUI package for Java that was built on top of the older AWT package. In the absence
of a large existing base of clients of AWT, Swing might have been designed differ-
ently, with AWT being refactored and redesigned along the way. Such a refactoring,
however, was not an option, and we can witness various anomalies in Swing, such as
duplicated code, sub-optimal inheritance relationships, and excessive use of run-time
type discrimination and downcasts.

In this paper we argue that unanticipated changes are better supported when we
abandon the principle of the consistent world-view. Classboxes offer us the ability to
define a local scope within which our world-view is refined without impacting exist-
ing clients. Classboxes can collaborate to control the scope of change in a way that
can significantly reduce the need for introducing anomalous design practices to bridge
inconsistencies between the old and the new parts of a system.

In recent years, numerous researchers have proposed better ways to modularize code
in such a way as to allow a base system to be easily extended, following the philosophy
behind CLOS or Smalltalk. For instance, Open Classes, AspectJ and Hyper/J allow
class members to be separately defined from the class they are related to. They do



not, however, permit multiple versions of a class to be present at the same time. Other
approaches, like virtual types (as in Keris, Caesar, gbeta, and Nested Inheritance), allow
multiple versions of a given class to coexist at the same time: classes are looked up much
the same way that methods are. These mechanisms, however, only allow one to refine
inner classes inherited from a parent class. Refinement divorced from inheritance is not
supported.

We have previously proposed classboxes as a means to control the scope of change
in the context of Smalltalk [2, 3]. A classbox is essentially a kind of module which not
only provides the classes it defines, but may also import classes from other classes and
refine1 them by adding or modifying their features.

There are three key characteristics to classboxes:

– A classbox is a unit of scoping within which classes and their features (i.e., fields,
methods, inner classes) are defined, imported and refined. Each class is always de-
fined in a unique classbox, but it may be imported and refined by other classboxes.
Refinements are either new features or redefinitions of features.

– A refinement is locally visible to the classbox in which it is defined. This means
that the change is only visible to (i) the refining classbox, and (ii) other classboxes
that directly or indirectly import the refined class.

– A local refinement has precedence over any previous (i.e., imported) definition or
refinement. This means that, although refinements are locally visible, their effect
impacts all their collaborating classes. A classbox thereby determines a namespace
within which local class refinements behave as though they were global. From the
perspective of a classbox, the world appears to be consistent.

Classboxes were first introduced with an implementation in Smalltalk [3] and sub-
sequently formally described [2]. In particular, we were able to demonstrate that class-
boxes could be implemented efficiently in a dynamically-typed language with minimal
run-time overhead. In this paper we demonstrate how classboxes can be applied ef-
fectively to control unanticipated change in a large, industrially-developed application
framework written in a statically-typed language, namely Java. A longer description of
Classbox/J can be found in our previous work [1].

References

1. A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the scope of change in
Java. In Proceedings of Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’05), pages 177–189, New York, NY, USA, 2005. ACM Press.

2. A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Classboxes: Controlling visibility of class
extensions. Computer Languages, Systems and Structures, 31(3-4):107–126, Dec. 2005.

3. A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A minimal module model supporting local
rebinding. In Proceedings of JMLC 2003 (Joint Modular Languages Conference), volume
2789 of LNCS, pages 122–131. Springer-Verlag, 2003.

1 In the literature, such modifications are usually termed “extensions”, but to avoid confusion
with Java’s extends keyword, we refer instead to “refinements”.


	Controlling the Scope of Change in Java with Classboxes
	Alexandre Bergel

