
FacetS: First Class Entities for an Open Dynamic AOP
Language

Alexandre Bergel
Distributed Systems Group

Trinity College
Dublin 2, Ireland

www.cs.tcd.ie/Alexandre.Bergel

ABSTRACT
This paper describes a new aspect language construct for Squeak,
named FACETS. Aspects are completely integrated within the Squeak
programming language and its environment. The innovations of
FACETS are: (i) traits can be part of the pointcut definition, (ii)
two scoping policies are available to share state among aspects and
(iii) aspects are prototype-based.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.1.5 [Programming Languages]: Object-oriented Program-
ming

General Terms
Language, Design

Keywords
Aspect, traits, inheritance, state, prototype

1. INTRODUCTION
Aspect-oriented programming (AOP) [11] holds the promise of

composing software out of orthogonal concerns. AOP promotes
code insertion (i.e., advices) at some particular locations in the
source code (i.e., join point shadow). Advices are executed when
the control flow reaches a joint point shadow. Some dynamic re-
quirements like pattern in the method call stack can also be speci-
fied.

Current AOP approaches suffer form two well know problems:

• Once weaved, aspects are “melted” in the base system. No
discernment can therefore be made between the base system
and the aspects. As a result, debugging and reverse engineer-
ing are greatly hampered.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Open Aspect Languages Workshop (AOSD) Bonn (Germany).
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

• Most of AOP systems require a dedicated language different
from the base language. This increases the amount of effort
required to use aspect oriented techniques.

In this paper, we present FACETS, a new dynamic aspect system
for which: aspects can be installed and removed at runtime, aspects
are incrementally built in the same language as the host system.
Code weaving is based on the use of wrapper. FACETS is currently
implemented in Squeak [10, 18] benefiting from its reflective fea-
tures. The contributions of this paper are:

• Traits can be part of a pointcut definition.

• Two scoping policies for sharing variables among aspects.

• Description of prototype based aspects.

Firstly, Section 2 provides a description FACETS, showing its
main characteristics. Then, Section 3 presents a few points of the
implementation. Section 5 raises some open questions and presents
a future direction of FACETS. Finally, Section 6 concludes this pa-
per.

2. FIRST CLASS ENTITIES IN AOP
FACETS is a new dynamic aspect system where aspects are in-

crementally and programmatically defined (in the same spirit as
Steamloom [3]). Moreover, aspects can be dynamically installed
and removed.

This section uses the scenario previously introduced by Hirsch-
feld [9] to illustrate the key points of FACETS. This example is
based on introducing a trace over the whole graphic class hierarchy
in Squeak. Methods named mouseEnter: are instrumented with
some printing into the standard output stream. This method is trig-
gered when the mouse cursor is moved over a widget area.

2.1 Incremental Construction
In our terminology, an aspect is a collection of advices. And an

advice encapsulates the code instrumentation and specifies the lo-
cation where this instrumentation should occur.

Advice. An advice is created by (i) instantiating the class Advice,
and providing (ii) the instrumenting code, (iii) a list of pointcuts,
and a (iv) qualification of the instrumentation (i.e., before, after,
and around):

advice := Advice new.

advice code: [:wrapper |
Transcript show: ’Invoke: ’, wrapper selector,

’ args: ’, wrapper arguments printString,

1

http://www.cs.tcd.ie/Alexandre.Bergel

’ receiver: ’, wrapper receiver printString ;cr].

advice addPointcut: [:behavior :method |
(behavior inheritsFrom: Morph) and: [m = #mouseEnter:]].

advice qualification: #before.

The code provided to the advice is a block (also considered as
a function or a closure) which takes as parameter a wrapper con-
taining runtime information for instance, the name of the invoked
method (selector), the list of arguments (arguments) and the object
receiver of the message (receiver).

Pointcut. A join point is an element of the language semantics
that the aspect coordinates with. It traditionally identifies location
within the source code of an application. A pointcut is a predicate
used to identity join points.

In FACETS, a pointcut is represented as a function that takes as
argument a behavior (i.e., a class or a trait, discussed in Section
2.2) and a method name (method), and returns whether this par-
ticular method is a join point or not. In the example above, the
pointcut [:behavior :method | (behavior inheritsFrom: Morph) and:
[m = #mouseEnter:]] identifies subclasses of Morph (root of the
graphical class hierarchy) for which the method mouseEnter: is de-
fined. Note that in this version of FACETS variable access is not
supported.

Classes in Squeak do not have constructor, but rather a method
named initialize which is called when this class is instantiated. Ob-
ject creation can therefore be advised by defining a pointcut for the
method basicNew.

Several pointcuts can be added to an aspect. The corresponding
advice is activated when one of the pointcuts is true. Note that the
pointcut are static, meaning that they are evaluated at weaving time.

Aspect. Aspects are created by instantiating the class Aspect. Ad-
vices are then added to this instance. The advice described above
is added into a new aspect:

aspect := Aspect new.
aspect addAdvice: advice.

Once instantiated, an aspect can be freely installed and removed
at runtime.

2.2 Traits and Aspects
Traits are recognized for their potential in supporting better com-

position and reuse, hence their integration in newer versions of
languages such as Perl 6, Squeak [10], Scala [16], Slate [17] and
Fortress [6]. One important innovation of FACETS is to allow traits
to be part of a pointcut definition.

Description of traits. The trait model is a new language con-
struct proposed by Schärli et al. is an alternative to multiple in-
heritance [5]. Traits are essentially sets of methods that serve as
the behavioral building block of classes and the primitive units of
code reuse. Classes (and composite traits) are composed from a set
of traits by specifying glue code which connects the traits together
and accesses the necessary state. With this approach, classes retain
their primary role as generators of instances, while traits are purely
units of reuse. As with mixins, classes are organized in a single
inheritance hierarchy, thus avoiding the key problems of multiple
inheritance, but the incremental extensions which classes introduce
to their superclasses are specified using one or more traits.

Pointcut designating traits. A pointcut is represented as a pred-
icate taking a behaviour and a method name as parameters. This
behaviour can either be a class or a trait. A trait can therefore be
the subject of a join point definition. For instance, the following
pointcut identifies the method named compile: in a trait used by the
class Behavior:

advice addPointcut: [:behavior :method |
(behavior isTrait and:

[behavior users includes: Behavior]) and:
[method == #compile:]].

Defining an aspect on a trait makes the methods of this trait (i.e.,
defined methods and methods obtained from a trait composition)
which are wrapped with an advice. When a trait is used by some
classes, aspects defined on this trait are then defined on the using
classes. The flattening property of the traits is “A non-overridden
method in a trait has the same semantics as if it were implemented
directly in the class.” A consequence of this property is that if some
aspects are defined on a trait, these aspects are also defined on the
class which use this trait.

Advice and traits. Dynamic information related to the advice ac-
tivation is available to the code contained in an advice. This infor-
mation is provided to the code contained in the advice by means
of the wrapper. A wrapper understands the message receiver. The
result of it is the instance of the current receiver, i.e., an instance of
a class or a subclass that uses a trait.

2.3 Dynamic Installation and Removal
An aspect can be installed and removed by simply invoking the

methods install and remove on the instance which describes this
aspect. For instance, aspect install instruments all the methods mou-
seEnter: defined in each subclass of the class Morph. In the case of
a multi-threaded environment, it might occur that a method is under
execution when it is instrumented. In this case, the instrumentation
has effect only for future invocations.

In a similar way, aspects can be removed by simply invoking the
method remove on an aspect: aspect remove uninstall the aspect.
All the instrumentation of the methods mouseEnter: are removed.
If an instrumentation is under execution while an aspect is removed,
only future invocation will not invoke the instrumentation.

Installation of an aspect is done by sending either the message
installOn: or install to the instance of an aspect. The method instal-
lOn: takes as argument a list of potential classes that this aspect can
be applied to. The method install assumes that all the classes in the
system may potentially be part of a pointcut definition.

2.4 Properties
This section enumerates the properties of the FACETS aspect

mechanism.

Global visibility. Whereas in Steamloom [3] an aspect can be
thread local or instance specific, FACETS does not provide any
scoping mechanism. Limiting the visibility of an aspect to a thread
has the advantage of bounding the “responsibility” of aspect instal-
lation/removal only to the control flow orders it. In other words, the
thread that installs/removes an aspect cannot impact other running
threads. In FACETS, an aspect is globally visible, therefore instal-
lation and removal may affect the entire system.

Conflicts are forbidden. Composing aspects is a challenging task.
Current approaches are based on specifying a proper order of aspect
application [2] or various method instrumentation [12].

2

In the current version of FACETS, we deliberately left conflicts
management for future work. Currently, we forbid a method to be
instrumented more than once.

Aspect at runtime. Most of current AOP approaches “melt” an
aspect into the code at weave-time. Code analysis in software re-
verse engineering is therefore hampered because the base code is
“polluted” with aspect code. FACETS tackles this issue by keeping
aspects distinct from the base code (in terms of source code and
bytecode). Aspects and base system can be independent of the sub-
ject for analysis, even after being weaved.

Unique language. Traditionally, AOP systems use a dedicated lan-
guage to specify pointcuts and advices. Applying AOP techniques
therefore necessitates the knowledge of a language different from
one use to develop the base system. FACETS uses the same lan-
guage, Squeak [18], to write aspects and applications. Aspects
are instantiation of plain standard classes, and pointcuts are block
structures (similar to Scheme’s closure and Java’s anonymous inner
classes).

Application of aspects on classes which use traits. In most com-
mon implementation of aspects (e.g., AspectJ [2]), an aspect fully
defines what and where advices have to be applied to.

With FACETS, the user classes of this trait are not known when
an aspect is defined on a trait. An aspect can later on be applied
to a class by making this class use the trait. The responsibility of
designing the location of an aspect is broadened.

Prototype-based aspect. In FACETS an aspect is defined as an in-
stance of the class Aspect or one of subclass of Aspect. Because a
class can define state (i.e., instance variables), an aspect therefore
encapsulates state that is accessible only to the advices contained
in this aspect. Moreover, an aspect can be instantiated more than
once in FACETS. As in Squeak a class can have shared class vari-
ables, variables can be shared among all the instance of a subclass
of Aspect.

In FACETS, two scoping are available to share state: (i) aspect
instance scoped, variables are shared among the advices of a partic-
ular aspect instance, and (ii) aspect family scoped, variables shared
among instances of an aspect class (and its subclass).

This has to be put in contrast with AspectJ-like approaches where
an aspect applies the singleton pattern [7]: with AspectJ, an aspect
can be instantiated only once. It means that AspectJ supports only
aspect instance scope to share variable.

3. IMPLEMENTATION
Contrary to AOP systems like AspectJ [2], FACETS does not use

bytecode manipulation to instrument methods, but rather uses built-
in reflective features of Squeak. The instrumentation or a method
consists in generating a wrapper for it.

Most of structural elements of the object model are first class
entities in Squeak: a class, a method and a method dictionary is
accessible as any standard plain object. In Squeak, a class has,
among some other attributes, a name, a superclass, and a reference
to a method dictionary. The set of methods defined by a class is
defined by a method dictionary. A method dictionary contains a list
of associations 〈 methods name, compiled methods 〉. And finally,
a compiled method is a list of bytecode, directly executable by the
virtual machine.

In FACETS, a method instrumentation consists in generating a
wrapper. This wrapper is inserted between the method dictionary
and the compiled method.

name: Morph
superclass: Object

Morph class Method dictionary

bounds
move

mouseEnter:

...

...
join point: ...

Wrapper

bytecode

Compiled
method

methods dict:

bytecode:

Figure 1: The method mouseEnter: is instrumented.

Figure 1 depicts the instrumentation of the method mouseEn-
ter: on the class Morph. The wrapper containing a reference to the
join point is inserted between the method dictionary and the com-
piled method. On sending the message mouseEnter: an instance of
Morph invokes the wrapper. This instance has then the control on
the message sent and can trigger the compiled method according
to the join point. Note that this implementation is similar to the
method wrapper [4]. The difference is

4. RELATED WORK
This section put FACETS in perspective compared to relevant

works. FACETS is the only aspect mechanism to support traits, we
therefore do not mention this difference for each enumerated work.

AspectS. The first AOP system designed for Squeak is AspectS [9].
AspectS and FACETS differ regarding the aspect construction. With
AspectS a new aspect is created by subclassing the class Aspect. An
advice is then associated with a method.

With FACETS, an aspect is created by instantiating the class As-
pect and by providing pointcuts and advices. FACETS supports
incremental definition of aspects.

Steamloom. Steamloom [3, 8] is a highly optimized extension of
IBM’s Jikes virtual machine supporting dynamic join points. As-
pects can be dynamically deployed and removed according to three
kinds of visibility: global, thread-local, and instance-local. Steam-
loom therefore implicitly supports a notion of context as a unit of
computation (i.e., thread) and as a structural runtime entity (i.e.,
object). Incremental definition of aspects is also supported.

Steamloom mainly differs from FACETS in the implementation
and the kind of pointcut supported . Steamloom necessitates a ded-
icated virtual machine, where FACETS runs on the classical Squeak
VM. Moreover FACETS allows a trait to be part of the pointcut def-
inition. An aspect is applicable to a trait and to a class.

Classpects. The AOP system Classpects [15] proposes a unifica-
tion between classes and aspects. Each structural element (i.e., as-
pect, join point, advice, ...) are first class entities. However, it does
not provide any dynamic ability for installing and removing aspects
at execution time.

Reflex. In the context of Java, Reflex [19] provides building blocks
for facilitating the implementation of different aspect-oriented lan-
guages so that it is easier to experiment with new AOP concepts
and languages, and it is also possible to compose aspects written in
different AOP languages. It is built around a flexible intermediate
model, derived from reflection, of (point)cuts, links, and metaob-
jects, to be used as an intermediate target for the implementation of
aspect-oriented languages.

CaesarJ. Aspects, packages and classes are unified in CaesarJ [1]

3

under a single construct. Similar to Steamloom [3, 8], aspects de-
ployment can either be global or thread local. An aspect can also
be deployed and removed at runtime. CaesarJ does not provide
first class entity pointcuts, therefore activation of an aspect is deter-
mined by join points (i.e., a result of a pointcuts language expres-
sion).

5. FUTURE WORK AND FURTHER QUES-
TIONS

The current version of FACETS described in this paper is an early
prototype of a new vision for AOP. This section lists few relevant
points to be discussed at the workshop.

Conflicts and aspects. Aspects in the term of AspectJ [2] cannot
be used to define unanticipated changes. The main reason is the
lack of efficient visibility policies. Aspects may conflict with each
other, and aspects may conflict with the base system (e.g., with the
introduction mechanism of AspectJ).

Hyper/J [13] does a better job than AspectJ regarding conflict
management. Applying an aspect (i.e., a feature according to the
Hyper/J terminology) creates a copy of the base system (named a
hypermodule), leaving the original base system intact.

These issues are well know. Ostermann and Kniesel summarized
these issues in their previous work [14]. Aspects are an excellent
mechanism to define crosscutting concerns when these are fore-
seen, however they are poor when extensions with a well limited
impact have to be defined.

Regarding this topic, some more general questions are: What
would a good visibility mechanism be for AOP? Why not avoid con-
flict instead of dealing with its resolution?

Aspect based language kernel. As far as we are aware, none of
the existing AOP languages place aspects at the core of their object
model. Whereas classes and aspects have similarities [15], classes
are not defined in term of aspects. Whereas Smalltalk, ObjVLisp,
CLOS have a clean meta model, none of the aspect languages pro-
vide a clean kernel. What would be an aspect based reflective ker-
nel of a language ?

6. CONCLUSION
This paper describes a new AOP systems for the Squeak pro-

gramming language. By having as first class entities structural AOP
elements like aspect, advice and pointcut, FACETS allows for (i) in-
cremental definition of aspects, (ii) dynamic aspect installation and
removal, (iii) non invasive weaving, leaving the base code intact
and (iv) uses the same language to describe aspects and the base
system. The current version of FACETS is available on www.cs-
.tcd.ie/Alexandre.Bergel/FacetS.zip .

Current challenges are illustrated with some open questions re-
garding impact and visibility of aspects and also regarding an as-
pect based language kernel.

AOPD is a new methodology that brings better modularity into
software. It also benefits from a deep knowledge within the scien-
tific community. However it has little support from industries. One
reason for this is that AOP is currently not placed at the heart of
software development. This is exactly the goal of FACETS, making
AOP closer to developer.

Acknowledgments. We gratefully acknowledge the financial sup-
port of the Science Foundation Ireland and Lero — the Irish Soft-
ware Engineering Research Centre.

We also would like to thanks Serena Fritsch, Eamonn Dillon and
Jenny Munnelly for their helpful readings and comments.

7. REFERENCES
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An

overview of caesarj. Transactions on Aspect-Oriented
Software Development, 2006. To appear.

[2] AspectJ home page. http://eclipse.org/aspectj/.
[3] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.

Virtual machine support for dynamic join points. In AOSD
’04: Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 83–92, New
York, NY, USA, 2004. ACM Press.

[4] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to
the Rescue. In Proceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998. method
wrappers.

[5] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. Black. Traits: A mechanism for fine-grained reuse.
Transactions on Programming Languages and Systems, Mar.
2006. To appear.

[6] The fortress language specification.
research.sun.com/projects/plrg/fortress0618.pdf.

[7] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson. Design
patterns: Abstraction and reuse of object-oriented design. In
O. Nierstrasz, editor, Proceedings ECOOP ’93, volume 707
of LNCS, pages 406–431, Kaiserslautern, Germany, July
1993. Springer-Verlag.

[8] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker,
M. Eichberg, and M. Krebs. An execution layer for
aspect-oriented programming languages. In Proceedings
VEE 2005. ACM Press, June 2005.

[9] R. Hirschfeld. AspectS – Aspect-Oriented Programming
with Squeak. In M. Aksit, M. Mezini, and R. Unland,
editors, Objects, Components, Architectures, Services, and
Applications for a Networked World, number 2591 in LNCS,
pages 216–232. Springer, 2003.

[10] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, A practical
Smalltalk written in itself. In Proceedings OOPSLA ’97,
ACM SIGPLAN Notices, pages 318–326. ACM Press, Nov.
1997.

[11] G. Kiczales. Aspect-oriented programming: A position paper
from the Xerox PARC aspect-oriented programming project.
In M. Muehlhauser, editor, Special Issues in Object-Oriented
Programming. Dpunkt Verlag, 1996.

[12] I. Nagy, L. Bergmans, and M. Aksit. Composing aspects at
shared join points. In A. P. Robert Hirschfeld,
Ryszard Kowalczyk and M. Weske, editors, Proceedings of
International Conference NetObjectDays, NODe2005,
volume P-69 of Lecture Notes in Informatics, Erfurt,
Germany, Sept. 005. Gesellschaft für Informatik (GI).

[13] H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation
of concerns for Java. In Proceedings of the 22nd
international conference on Software engineering, pages
734–737. ACM Press, 2000.

[14] K. Ostermann and G. Kniesel. Independent extensibility – an
open challenge for aspectj and hyper/j. In Proceedings of
Aspects and Dimensions of Concern Workshop, 2000.

[15] H. Rajan and K. J. Sullivan. Classpects: Unifying aspects-
and object-oriented language design. In Proceedings

4

http://www.cs.tcd.ie/Alexandre.Bergel/FacetS.zip
http://www.cs.tcd.ie/Alexandre.Bergel/FacetS.zip

International Conference on Software Engineering (ICSE
2005), pages 59–68, 2005.

[16] Scala home page. http://lamp.epfl.ch/scala/.
[17] Slate. http://slate.tunes.org.
[18] Squeak home page. http://www.squeak.org/.
[19] É. Tanter and J. Noyé. A versatile kernel for multi-language

AOP. In Proceedings of the 4th ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component
Engineering (GPCE 2005), volume 3676 of LNCS, Tallin,
Estonia, sep 2005.

5

	Introduction
	First Class Entities in AOP
	Incremental Construction
	Traits and Aspects
	Dynamic Installation and Removal
	Properties

	Implementation
	Related Work
	Future Work and Further Questions
	Conclusion
	REFERENCES -9pt

