
IC2D: Interactive Control and Debugging
of Distribution

Françoise Baude, Alexandre Bergel, Denis Caromel,
Fabrice Huet, Olivier Nano, and Julien Vayssière

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis,
BP 93, 06902 Sophia Antipolis Cedex, France

First.Last@inria.fr

Abstract. Within the trend of object-based distributed programming,
we present a non-intrusive graphical environment for remote monitoring
and steering, IC2D : Interactive Control and Debugging of Distribution.
Applications developped using the 100% Java ProActive PDC (Parallel,
Distributed and Concurrent) computing library are monitored for ‘free’
by IC2D. As those targetted applications can run on any distributed
runtime support ranging from multiprocessor workstations, clusters, to
grid-based infrastructures (through the Globus toolkit), IC2D turns out
to be a grid-enabled programming environment.

Keywords: distributed computing, metacomputing, active object, mi-
gration, graphical visualisation, debugging, monitoring, steering, object-
oriented.

1 Introduction

The results we present in this paper capitalise on research performed over the last
few years on the ProActive PDC (Parallel Distributed and Concurrent) library
[4]. ProActive is a library for concurrent, distributed and mobile computing in
Java. As ProActive is a 100% Java application, applications built using it can
run on any kind of machine (workstations, multiprocessors servers, clusters, etc)
and under any operating system, provided that there exists an implementation
of the Java virtual machine for the platform in question.

In this paper we describe IC2D, which is a graphical environment for moni-
toring and steering applications built using ProActive. It enables the programmer
to dynamically visualise the inner workings of a ProActive application at run-
time and also allows the user to interactively control the mapping of tasks onto
machines, either upon creation or at migration time. The underlying motivation
is to help users to deploy, monitor and control ProActive computations running
on either kind of distributed platforms including grids.

Section 2 provides some background on ProActive. Then, in section 3, we
present the main features that IC2D brings to ProActive applications. We then
provide a comparison with related work in section 4.

S. Margenov, J. Wasniewski, and P. Yalamov (Eds.): ICLSSC 2001, LNCS 2179, pp. 193–200, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



194 F. Baude et al.

2 Distributed and Mobile Active Objects with ProActive

As ProActive is built on top of standard Java APIs1, it does not require any
modification to the standard Java execution environment, nor does it make use
of a special compiler, preprocessor or modified virtual machine.

The model of distribution and activity that we present in this section is
part of a larger effort to improve simplicity and reuse in the programming of
distributed and concurrent object systems [2,3].

2.1 Base Model

A distributed or concurrent application built using ProActive is composed of a
number of medium-grained entities called active objects. Each active object has
its own thread of control and is granted the ability to decide in which order
to serve the incoming method calls that are automatically stored in a queue of
pending requests. Method calls sent to active objects are always asynchronous
with transparent future objects and synchronisation is handled by a mechanism
known as wait-by-necessity.

The ProActive library provides a way to migrate any active object from any
JVM to any other one. This is done through a MigrateTo(...) primitive which
can either be called from the object itself or through a method call from another
active object.

2.2 Mapping Active Objects

A Node is an object defined in ProActive whose aim is to host several active
objects. It provides an abstraction for the physical location of a set of active
objects. An active object can be bound to a node either at creation time or as
the result of a migration. As active objects execute within Java Virtual Ma-
chines, there is actually a simple way to think about nodes: nodes can be seen
as entry points to JVMs. If the programmer does not need or want to explicitly
work with nodes, a default node is created on each JVM and active objects are
automatically bound to it.

In order to name and handle nodes in a simple manner in the entire ProAc-
tive system, each node must be labelled with a name. This name is usually an
URL that consists of themachine hostname and a string (e.g. //sakuraii/Node1).
This URL is then registered with rmiregistry. Active objects, just like nodes,
can also be named in order to be registered and subsequently located. An ad-
ditional way to register and locate nodes or active objects is to use the Lookup
Service of Jini [5]. New participants will then be able to dynamically discover
nodes or active objects, and join an on-going ProActive computation. These var-
ious means of registering and locating are of uttermost interest for collaborative
distributed applications for instance.
1 Java RMI [15], the Reflection API [14],...



IC2D: Interactive Control and Debugging of Distribution 195

Execution in a Metacomputing Environment. In order to launch ProAc-
tive nodes on ‘foreign’ hosts, a metacomputing system must be brought in. We
currently rely on the Globus system [7] and the Java CoGKit interface [16], in
order to start JVMs and ProActive nodes. We also can make use of dynamic
class loading, thanks to a RMI class file server in order to avoid to manually
transfer class files before their use. Foreign nodes will be registered as usual in
distributed instances of the rmiregistry. As a consequence, the only change to
deploy ProActive applications is to modify command-line parameters in order
to specify which ’globus’ machines are used. Notice here that the deployment is
done by hand.

3 Visualisation and Control
within the IC2D Environment

Figure 1 provides a quick summary of the features IC2D adds to ProActive ap-
plications.

3.1 Visualisation

Figure 2 gives an overview of the two sorts of information that IC2D provides
to the user: information about the support of the ProActive computation, and
information about the progress of the computation.

Graphical Visualisation:
- Hosts, Java Virtual Machines, Active Objects
- Topology of active objects: reference and communications
- Status of active objects (executing, waiting, etc.)
- Migration of active objects

Textual Visualisation:
- Ordered list of messages exchanged by active objects
- Status of active objects: waiting for a request or for a reply
- Causal dependencies between messages
- Related events (corresponding send and receive, etc.)

Control and Monitoring:
- Interactive control of mapping of active objects upon creation
- Interactive control of destination of active objects upon migration
- Step by step execution
- Drag and Drop migration of executing active objects

Fig. 1. A summary of the basic features of IC2D



196 F. Baude et al.

Fig. 2. General view of what IC2D displays when an application is running

In the top part of figure 2, one can visualise the imbrication of hosts, VMs,
and ProActive nodes2. The topology shows the set of used references (i.e. com-
munications) between active objects. The dot at each end of a grey line depicts
the endpoint of the remote call. As the message traffic is a good indication of
the way the application is structured into its various components, the bigger the
message traffic towards an active object, the bigger the width of this line.

In the bottom part of figure 2, one can visualise any portion of the message
flow on graphically selected active objects (here, C3DUser #13, C3DDispatcher
#12, C3DRenderingEngine#0) and more precisely for a given event (here, the
request reception [C3DDispatcher #12]), all its causally-related events in the
whole ProActive computation. Some events that occurred locally but are indi-
rectly related to method calls towards active objects are also shown:

2 In the figure, each rectangle inside a grey box is a JVM, which means that there is
exactly one VM running on each host, except on sakurai where 2 are running



IC2D: Interactive Control and Debugging of Distribution 197

ObjectWaitByNecessity (a reply is awaited), ObjectWaitForRequest (the
queue of requests is empty) This gives a good feedback of the activity of the
object and its workload.

3.2 Monitoring

As the availability of computing resources varies over time, especially in grid-
based computing environments where many users share hosts, there is a strong
need for easy-to-use deployment and control tools. We now detail the most sig-
nificant features IC2D provides as a solution to various monitoring needs. Notice
that all needs are satisfied without any change, nor recompilation, of the existing
application.

At creation or at migration time, a way to interactively associate the new or
mobile active object to any already-running ProActive node: An active object
creation or migration arising on a given node is instrumented: the event cor-
responding to this action is notified and then triggers a dialog box with the
IC2D user, see figure 3.

Fig. 3. Interactive mapping of a new ProActive active object

A way to interactively move an ongoing active object to an other ProActive
node: As illustrated by figure 3, even if it is already possible to dynamically
modify the location of a new or a migrating active object IC2D adds the feature
to drag-and-drop any running active object such as to move it on any
ProActive node displayed by IC2D. The only constraint for an active object to
be the target of such user-driven migration is to implement a specific ProActive
interface called movable. The effect of the drag-and-drop event is to dynamically
put in front of the target active object requests queue, a MigrateTo() method
call with the target node location as parameter.

By using the ProActive library only without IC2D, the programmer has the
ability to hand-code the solution to all the above requirements, but this will
lead to the intermixing of the application code with the code for monitoring and
debugging.

3.3 Design

The IC2D system is an external part of ProActive applications, and moreover
it is not mandatory to run it as a permanent part. It is built according to the



198 F. Baude et al.

usual pattern for event notification. This external part, composed of a central
and unique monitor and a spy on each node, plays the role of an observer: events
are delivered to the spy, processed and eventually displayed to the end-user by
the monitor. The spy is implemented as an active object.

In order to control or steer the application, some kind of events, such as active
object creations or migrations should not only be notified but should in addition
trigger a given action, that is an interactive modification of some parameters
pertaining to the operation the event notifies. In this case, the spy does not only
act as a listener, but as a listener-modifier.

4 Related Work

4.1 Monitoring

On-line monitoring, visualising and debugging distributed applications is a very
broad area. Two widely known examples are XPVM for assisting in debugging
PVM applications [8] or ParaGraph, a performance visualisation tool for Paragon
applications [11]. IC2D compares well with them.

4.2 Steering

Interactive program steering pertains to the runtime manipulation of an appli-
cation program and its execution environment. Usually, application developers
themselves create ‘steerable’ applications by identifying components of the appli-
cation to export to the end-user. For example, through the Progress [9] toolkit,
the programmer must first define and register steering objects (for instance for
some complex data of its program) and the operations on them. He then must
instrument its application in order to call those operations, synchronise with
their execution, etc. As IC2D is dedicated to monitor and steer distributed fea-
tures only, it does not require the instrumentation of the application. Instead,
only the ProActive library methods that manage meta-objects dedicated to dis-
tribution need to be instrumented.

4.3 Grid-Enabled Programming Environments

The development of grid computing environments, problem solving environments
(PSEs) and computing portals is a very active and challenging area [10]. We will
only discuss a few object-oriented programming environments, as they provide a
better encapsulation and abstraction than any of the lowest-level programming
systems, such as for example grid-enabled implementations of the Message Pass-
ing Interface or RPC systems [12]. Nevertheless, ProActive has a similar aim, but
with a strong emphasise on code reuse, flexibility, extensibility. At the other end
of the spectrum (i.e. at a level closer to applications) we can mention problem
solving environments, like for example Cactus [1], but which are quite difficult
to compare with IC2D as they are dedicated to specific application domains.



IC2D: Interactive Control and Debugging of Distribution 199

Moba/G [17] is a grid-based Java thread migration system and as such shares
many features with ProActive. But it lacks some of the features IC2D provides:
visualisation of the topology and objects, drag-and-drop migration, etc. GECCO
(Grid Enabled Console COmponet) [16] is a high-level graphical tool for speci-
fying and monitoring the execution of sets of tasks with dependencies between
them. The main difference lies in the fact that IC2D non-intrusively and glob-
ally monitors and debugs activities at a finer level than the task/job granularity,
i.e. at the level of a collective and connected set of distributed communicating
objects.

5 Conclusion

We have presented IC2D, a graphical environment which enables a programmer
to interactively control and debug the distribution aspect of ProActive appli-
cations, which can themselves be of various kinds: collaborative and/or high-
performance distributed computations on clusters and/or grids, mobile object
based system and network management platforms, etc. The important point is
that no change at all to ProActive applications is required.

We are currently working on leveraging IC2D as a portal and using it for new
or already existing applications. For instance, IC2D has been recently used in our
team in order to monitor existing Enterprise Java Beans applications: the only
modification to the code is to turn a bean into an active object; then through
IC2D running as an applet, the bean can easily be distributed on servers, be
moved by the user with a drag-and-drop action, etc.

References

1. G. Allen, W. Benger, T. Goodale, H-C. Hege, G. Lanfermann, A. Merzky, T. Radke,
and E. Seidel. The Cactus Code: A problem solving environment for the grid, in
Proceedings of the Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC9), 2000.

2. D. Caromel. Towards a method of object-oriented concurrent programming, Com-
munications of the ACM, 36(9), 90–102, 1993.

3. D. Caromel, F. Belloncle, and Y. Roudier. The C++// Language, in Parallel
Programming using C++, MIT Press, 257–296, 1996. ISBN 0-262-73118-5.

4. D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless computing and meta-
computing in Java, in Concurrency Practice and Experience, 10(11–13), 1043–1061,
1998.

5. W. Keith Edwards. Core JINI, Prentice Hall, 1999.
6. G. Eisenhauer and K. Schwan. An Object-based infrastructure for program moni-

toring and steering, in 2nd SIGMETRICS Symposium on Parallel and Distributed
Tools (SPDT’98).

7. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit, Int.
Journal of Supercomputer Applications, 11(2), 115–128, 1997.

8. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A Users’ Guide and Tutorial for Networked Par-
allel Computing, MIT Press.



200 F. Baude et al.

9. W. Gu, G. Eisenhaur, E. Kraemer, K. Schwan, J. Stasko, and J. Vetter. Falcon:
On-line monitoring and steering of parallel programs, in Concurrency: Practice
and Experience., 1998.

10. C. Lee, S. Matsuoka, D. Talia, A. Sussman, N. Karonis, G. Allen, and M. Thomas.
A grid programming primer, Draft 2.4 of the Programming Models Working Group
presented at the Global Grid Forum 1, March 2001.

11. B. Ries, R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E. Richards, and
W. Smith. The Paragon performance monitoring environment, in Proc. Super-
computing ’93, IEEE Computer Society, 850–859, 1993.

12. S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf:
Network-based information library for globally high performance computing,
Parallel Object-Oriented Methods and Applications (POOMA), 39–48, 1996.
http://ninf.etl.go.jp.

13. B. Sridharan, B. Dasarathy, and A. Mathur. On building non-intrusive perfor-
mance instrumentation blocks for CORBA-based distributed systems, in 4th IEEE
International Computer Performance and Dependability Symposium, 2000.

14. Sun Microsystems. Java core reflection, 1998.
http://java.sun.com/products/jdk/1.2/docs/guide/reflection/index.html.

15. Sun Microsystems. Java remote method invocation specification, October 1998.
ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-JDK1.2.pdf.

16. G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. Cog kits: A bridge
between commodity distributed computing and high-performance grids, in ACM
Java Grande Conference, http://www.extreme.indiana.edu/java00., San Francisco,
California, June 2000.

17. G. von Laszewski, K. Shudo, and Y. Muraoka. Grid-based asynchronous migra-
tion of execution context in Java virtual machines, in R. Wismüller, A. Bode,
Th. Ludwig, (eds.), Euro-Par 2000 - Parallel Processing, LNCS, Springer-Verlag,
1900.


	1 Introduction
	2 Distributed and Mobile Active Objects with ProActive
	2.1 Base Model
	2.2 Mapping Active Objects

	3 Visualisation and Control within the IC2D Environment
	3.1 Visualisation
	3.2 Monitoring
	3.3 Design

	4 Related Work
	4.1 Monitoring
	4.2 Steering
	4.3 Grid-Enabled Programming Environments

	5 Conclusion
	References

