
Classbox/J: Controlling the
Scope of Change in Java

Alexandre Bergel,
Stéphane Ducasse and
Oscar Nierstrasz

bergel@iam.unibe.ch

Alexandre Bergel

Outline

1. AWT and Swing Anomalies

2. Classbox/J

3. Properties of Classboxes

4. Swing as a Classbox

5. Implementation

2

Alexandre Bergel

java.awt

Presentation of AWT

Component

ButtonContainerWindowFrame

• In the AWT framework:
– Widgets are components (i.e., inherit from Component)
– A frame is a window (Frame is a subclass of Window)

3

Alexandre Bergel

javax.swing

java.awt

Problem: Broken Inheritance in Swing

Component

ButtonContainerWindowFrame

JButton

4

JComponent
JWindowJFrame

Alexandre Bergel

java.awt

Problem: Code Duplication

Component

ButtonContainerWindowFrame

javax.swing

JButton

5

accessibleContext
rootPane
update()
setLayout()
...

accessibleContext
rootPane
update()
setLayout()
...

accessibleCont
extupdate()

Code Duplication

JComponent
JFrame JWindow

Alexandre Bergel

public class Container extends Component {
 Component components[] = new Component [0];
 public Component add (Component comp) {...}
}

public class JComponent extends Container {
 public void paintChildren (Graphics g) {
 for (; i>=0 ; i--) {
 Component comp = getComponent (i);
 isJComponent = (comp instanceof JComponent);
 ...
 ((JComponent) comp).getBounds();
 }
 }}

Problem: Explicit Type Checks and Casts

6

Alexandre Bergel

We need to Support Unanticipated Changes

• AWT couldn’t be enhanced without risk of breaking
existing code.

• Swing is, therefore, built on the top of AWT using
subclassing.

• As a result, Swing is a big mess internally!

• We need a mechanism to support unanticipated changes.

7

Alexandre Bergel

Classbox/J

• Module system for Java allowing classes to be refined
without breaking former clients.

• A classbox is like a package where:

– a class defined or imported within a classbox p can be imported
by another classbox (transitive import).

– class members can be added or redefined on an imported class
with the keyword refine.

– a refined method can access its original behavior using the
original keyword

8

Alexandre Bergel

Refining Classes (1 / 2)

A classbox widgetsCB

package widgetsCB;

public class Component {
	
	
 public void update() {this.paint();}
	
	
 public void paint () {/*Old code*/}
}

public class Button extends Component {
	
	
 ...
}

9

Alexandre Bergel

Refining Classes (2 / 2)

Widget enhancements defined in NewWidgetsCB:

package NewWidgetsCB;
import widgetsCB.Component;
import widgetsCB.Button;

refine Component {
	
/* Variable addition */

	
	
 private ComponentUI lookAndFeel;

	
	
 /* Redefinition of paint() */
	
	
 public void paint() {
	
	
 	
 /* Code that uses lookAndFeel*/ }
}

10

Alexandre Bergel

Multiple Versions of Classes

NewWidgetsCBwidgetsCB

paint()
update()

Component

paint()

Component

lookAndFeel

Button

Import

C class refinement

11

new Button(“Ok”).update() new Button(“Ok”).update()

Button

Alexandre Bergel

Import over Inheritance
Import

12

Lookup of the update() method triggered within
enhWidgetsCB. 1

NewWidgetsCBwidgetsCB

paint()
update()

Component

paint()

Component

lookAndFeel

Button

C class refinement

new Button(“Ok”).update() new Button(“Ok”).update()

Button
1

3

2

4

Alexandre Bergel

But update() calls paint()
Import

13

Lookup of the paint() method triggered within
enhWidgetsCB

1

NewWidgetsCBwidgetsCB

paint()
update()

Component

paint()

Component

lookAndFeel

Button

C class refinement

new Button(“Ok”).update() new Button(“Ok”).update()

Button
12

3

Alexandre Bergel

Old and New Clients at the Same Time
Import

14

OldGUIAppCB

Button OldGUIApp

NewGUIAppCB

Button NewGUIApp

NewWidgetsCBwidgetsCB

paint()
update()

Component

paint()

Component

lookAndFeel

Button

C class refinement

Button

Alexandre Bergel

Properties of Classboxes

15

• Minimal extension of the Java syntax (transitive import,
refine and original keywords).

• Refinements are confined to the classbox that define them
and to classboxes that import refined classes.

• Method redefinitions have precedence over previous
definitions.

• Classes can be refined without risk of breaking former
clients.

Alexandre Bergel

Swing Refactored as a Classbox

16

AwtCB

Component

Container
Window

SwingCB

Component

Button

Frame Window
rootPane

setLayout()
setRootPane()
setContentPane()
...

accessibleContext
component

update()
add(Component)
remove(Component)

Frame
Button

Alexandre Bergel

Swing Refactoring

17

• 6500 lines of code refactored over 4 classes.

• Inheritance defined in AwtCB is fully preserved in
SwingCB:
– In SwingCB, every widget is a component (i.e., inherits from the

extended AWT Component).
– The property “a frame is a window” is true in SwingCB.

• Removed duplicated code: the refined Frame is 29 %
smaller than the original JFrame.

• Explicit type checks like obj instanceof JComponent and
(JComponent)obj are avoided.

Alexandre Bergel

Naive Implementation

18

• Based on source code manipulation.

• The method call stack is introspected to determine the
right version of a method to be triggered.

• No cost for method additions, however slowdown of 1000
times when calling a redefined method.

• However, much better results were obtained in Smalltalk.
5 byte-codes are added to redefined methods (see our
previous work).

Alexandre Bergel

Method Call Stack Introspected

NewWidgetsCB and WidgetsCB define the paint method:
package WidgetsCB;
public class Component {
 public void paint() {

	
	
 if (ClassboxInfo.methodVisible (
	
	
 “NewWidgetsCB”, “Component”, “paint”)){
	
	
 	
 //Enhanced paint
	
	
 }
	
	

	
	
 if (ClassboxInfo.methodVisible (
	
	
 “WidgetsCB”, “Component”, “paint”)){
	
	
 	
 //Original paint
	
	
 }}}

19

Alexandre Bergel

Conclusion

• Classboxes delimit visibility of a change and avoid impacting
clients that should not be affected.

• Java is extended with two new keywords and transitive
import.

• Large case study showing how classboxes can be more
powerful than inheritance to support unanticipated
changes.

• Performance could be improved by modifying the VM.

20

Alexandre Bergel

We need an alternative to
inheritance to support
unanticipated changes!

Alexandre Bergel:
bergel@iam.unibe.ch

google “classboxes”

21

Alexandre Bergel

END

22

Alexandre Bergel

java.awt

A JWidget is not necessary a JComponent

Component

ButtonContainerWindowFrame

javax.swing

JComponent

JButton
JWindowJFrame

Are not subclasses of JComponent

23

Alexandre Bergel

java.awt

A JFrame is not a JWindow

Component

ButtonContainerWindowFrame

javax.swing

JComponent

JButton
JWindowJFrame

Missing inheritance link between JFrame and JWindow

24

Alexandre Bergel

AWT and Swing Anomalies

• Features defined in JWindow are duplicated in JFrame (half
of JWindow code is in JFrame).

• The Swing design breaks the AWT inheritance relation:
– AWT: a Window is a Component
– Swing: a JWindow is not a JComponent

• Need of explicit type checks and casts in Swing:
– For instance a JWindow needs to check if its elements are issued

from Swing or not before rendering them
– 82 type checks (instanceof) and 151 cast to (JComponent)

25

