
Beauty and the Beast: Translating Smalltalk to Java

Alexandre Bergel
RMoD Team, INRIA Lille-Nord Europe, France

alexandre.bergel@inria.fr

September 8, 2008

Abstract
The importance of Model-Driven Development (MDE)
in Software Engineering has been in a constant increase.
Model transformation, a key element of MDE, allows for
the definition and implementation of the operations on
models. This paper is about assessing how the Smalltalk
programming language may be used as a modeling lan-
guage to transform Smalltalk applications into Java ones.

To our knowledge, no attempt in translating Smalltalk
programs into Java programs has been made. Such a
translation raises several challenging issues related to the
type system and the execution model.

This paper presents a general translating schema for
Smalltalk to Java. In essence, each Smalltalk class is
translated into a Java one; the root of the Smalltalk classes
understands all Smalltalk messages that can be sent in or-
der to satisfy the type system. Blocks are translated into
inner classes. An implementation is also presented based
on several case studies.

1 Introduction
Model transformation is a key facet of model-engineering.
Technologies to perform model transformations range
from conventional programming languages to specific
transformation languages [7]. New general purpose and
domain specific languages are regularly emerging.

Model transformation is a general appellation that cov-
ers different techniques and approaches. In this paper,
we focus on transforming Smalltalk programs into cor-
responding Java ones. Mens et al. [5] qualify this pro-

gram transformation as exogenous since the artifacts we
are considering are programs and source codes are written
in two different languages.

This paper presents a general schema for translating
Smalltalk [3] into Java [4]. It describes a translation
mechanism and discuses about a set of problematic and
critical points that arise when translating a program writ-
ten into a dynamic object oriented programming language
to Java.

As shown with other language translator including
Bigloo1, Slang2, and Pypy3, such a translation cannot be
realized on the full extend of the dynamic language. A
subset has to be considered to cope with constraints of the
underlying programming executing. The tricky part is to
make this subset “big enough” to not make programmers
loose their direction when developing an application in-
tended to be translated.

To summarize our proposal, each single Smalltalk class
is translated into a Java one. The top root Smalltalk
class in Java is SmallObject. This class is the result of
translating the Smalltalk Object class. SmallObject imple-
ments all Smalltalk messages that can be possibly sent.
This inhibits the Java type checker on translated Smalltalk
classes. Each Smalltalk block is translated into an inner
class. For the strategy presented in this paper, the con-
straints imposed on Smalltalk are reduced to a minimal
set:

• Reflection is only limited to introspection since Java
does not provide tools for dynamic structure and be-

1http://www-sop.inria.fr/mimosa/fp/Bigloo/
2http://wiki.squeak.org/squeak/2267
3http://codespeak.net/pypy

mailto:alexandre.bergel@inria.fr
http://www-sop.inria.fr/mimosa/fp/Bigloo/
http://wiki.squeak.org/squeak/2267
http://codespeak.net/pypy


havioral reflection. Note that doesNotUnderstand is
supported by our translation.

• Blocks cannot refer to temporary variables since in-
ner classes cannot refer to local variables that are not
declared final.

Each of these constraints are discussed and analyzed
further down in the paper. To our knowledge, this paper
is the first one to present an efficient and portable transla-
tion schema into Java for Smalltalk. The results contained
in this paper suggest that this approach is viable and scal-
able.

Experiments and the implementation provided in this
paper use Squeak, a Smalltalk dialect open-source4. How-
ever, we believe the approach presented in this paper may
be successfully applied to most of Smalltalk dialects.

The paper is organized as follows: First, Section 2
gives a general idea about the main lines of the trans-
lation. Then, subsections elaborate on crucial aspects
of Smalltalk. Section 2.1 is dedicated to typing issues.
Section 2.2 is dedicated to Smalltalk blocks. Section
2.3 presents Smalltalk object model versus the Java one.
Section 2.4 relates on exception handling. Section 2.5
presents the importance to separate an application from
the Smalltalk runtime. Section 3 describes the feasibility
of the approach by offering various benchmarks. Section
4 presents a discussion and analysis. Section 6 concludes
this paper.

2 Translating Smalltalk into Java
Despite different syntaxes, programming environments
and application deployment mechanisms, the Smalltalk
and Java programming languages share several common-
alities. On the surface, Smalltalk and Java feature sin-
gle inheritance, message-passing, field access and update,
and self message send. They employ both a garbage
collector and a similar set of control flow instructions.
Both are object-oriented, therefore offer a notion of ob-
ject, class, use inheritance and message passing.

A first approximation for translating a Smalltalk pro-
gram into Java is easily obtained by mapping different
language elements. For example, consider the definition
of a class Counter in Smalltalk:

4http://www.squeak.org

Object subclass: #Counter
instanceVariableNames: ’value’
classVariableNames: ”
poolDictionaries: ”
category: ’CounterApplication’

Counter>> initialize
super initialize.
value := 0

Counter>> increment
value := value + 1

Counter>> incrementBy: aNumber
1 to: aNumber do: [:i |self increment]

Counter>> value
ˆ value

Counter>> display
Transcript show: ’counter value=’, value asString.

The class Counter inherits from the class Object and
belongs to the class category CounterApplication. It
has one instance variable (value) and defines five meth-
ods (initialize, increment, incrementBy:, value and dis-
play). The method initialize is automatically invoked when
Counter is instantiated, it therefore acts as a kind of con-
structor. initialize calls initialize from its super class and
sets value to 0. The method incrementBy: aNumber adds
(in a rather inefficient way) the value carried out by aNum-
ber to value. The message to:do: is sent to the immediate
value 1 with aNumber and a block as arguments. The
meaning of this call is to iterate from 1 to aNumber and
execute self increment at each iteration. The method dis-
play prints a short message on the standard output stream.

With a not-so-sophisticated technique of code transfor-
mation, Counter may be translated into the following Java
class definition:

public class Counter extends SmallObject {
SmallObject value;

public SmallObject initialize() { super.initialize(); value = 0; }

public SmallObject increment () {
value = value.plus (SmallInteger.getValue(1));
return this;

}

public SmallObject incrementBy (SmallObject aNumber) {
for (int i = ((SmallInteger)SmallInteger.getValue(1)).value;

i <= ((SmallInteger)aNumber).value; i++) {

2

http://www.squeak.org


SmallObject i = new SmallInteger( i);
this.increment ();

}
return this;

}

public SmallObject value() { return value; }

public SmallObject display () {
Transcript.show (new SmallString(”counter value=”).

append (value.asString ()));
return this;

}
}

This translation is obtained by using a dedicated visitor
over the Smalltalk abstract syntax tree. This translation
deserves few comments:

• When translated, Smalltalk objects are distinct from
Java objects by inheriting from SmallObject. This
class acts as a place holder for common operations
on Smalltalk objects (e.g., equality, basic conver-
sions, ...). As we shall see later, SmallObject will
be populated with empty methods to satisfy Java’s
static type checker.

• In Smalltalk, every method call returns an object, the
Java void type has no correspondence therefore. Ev-
ery method takes instances of SmallObject as param-
eters and has SmallObject as return type.

• Primitive types such as integer, boolean, string, float
are converted into their corresponding translated
pair. The class SmallNumber is a subclass of Smal-
lObject.

• The method initialize is naturally translated into a
constructor.

• The message Number>> to:do: is translated into a
Java for loop.

• The Java method call stack contains Smalltalk calls.

This example gives a first approximation of how
Smalltalk may be translated into Java. The following
subsections will focus on more problematic facets of
Smalltalk related to the type system (Section 2.1), blocks
(Section 2.2), the object model (Section 2.3), exception
handling (Section 2.4), and cutting the application to be
translated from the system (Section 2.5).

show(...)
Transcript

increment()
incrementBy(...)
display()
initialize()
value()
value(...)
valuevalue(...)
typeError()

SmallObject

increment()
incrementBy (...)
display()
initialize()

Counter
value()
value(...)
valuevalue(...)

SmallBlock

Figure 1: Each method in subclasses of SmallObject is
defined in SmallObject as well (the underlined method is
static).

2.1 Type
Smalltalk is traditionally classified as dynamically typed
(also called latently typed). This means that its type
system does not determine or even approximate values’
type. The only certitude the programmer has, is that each
Smalltalk expression will result in a Smalltalk object. One
of the benefits of dynamic typing is to make source code
concise and less verbose.

On the other side, Java is classified as a statically typed
language. The benefit of static type checking is to prevent
illegal operations (e.g., sending a message that cannot be
understood by the receiver) to happen at execution time.

Translating a program written into a dynamically typed
language necessitates the addition of such annotations to
satisfy the Java type system. The idea is to have a class as
the superclass of all Smalltalk classes that understand all
the messages that can possibly be sent. This is achieved
by gathering all the methods defined in the application and
the runtime (i.e., all the subclasses of SmallObject), and
then defining corresponding empty methods on the class
SmallObject. This situation is illustrated in Figure 1: thick
arrows shows the provenance of SmallObject’s methods
and italic methods are methods that call doesNotUnder-
stand when invoked.

For the class Counter given previously, the resulting

3



SmallObject will be defined as:

public class SmallObject extends Object {
public SmallObject initialize()

{ return this.doesNotUnderstand (
new Message (”initialize not implemented”)); }

public SmallObject increment()
{ return this.doesNotUnderstand (

new Message (”increment not implemented”)); }
public SmallObject incrementBy(SmallObject aNumber)

{ return this.doesNotUnderstand (
new Message (”incrementBy not implemented”)); }

public SmallObject value()
{ return this.doesNotUnderstand (

new Message (”value not implemented”)); }
public SmallObject display()

{ return this.doesNotUnderstand (
new Message (”display not implemented”)); }

...

public SmallObject doesNotUnderstand(SmallObject msg) {
System.err.println(msg.printString());
throw MessageNotUnderstood(msg);
return null;

}
public SmallObject typeError() {

System.err.println(”Wrong type”);
Thread.dumpStack();
System.exit(1);
return null;

}
}

The class Counter defines the methods initialize(), in-
crement(), incrementBy(...), value(), display(). For each
of these methods, an empty method having the same sig-
nature is created on SmallObject, the top most class of
Smalltalk classes. The method show: is not defined in
SmallObject since show: is a class side method, therefore
translated into a static method in Java.

This mechanism makes each method in the Smalltalk
application invokable on all Smalltalk objects. The de-
fault implementation of doesNotUnderstand throws an
exception. typeError() is a convenient method that prints
the Java stack with an error signaling a type error. This
occurs when a method is called on an object that does not
understand it. The definition of SmallObject above aborts
the program execution in case of a message is not under-
stood. Although some might feel the program interruption
a bit rough, we assume such situation to be abnormal, re-
vealing a wrong behavior for which pursuing the program
execution is unlikely to resolve.

As we mentioned above, we take as hypothesis that the
application to translate is self-contained. We therefore do
not support separate compilation: a Smalltalk class cannot
be translated in isolation. This has the benefit to statically
know all the messages that can be sent. A simple pass on
the Smalltalk abstract syntax tree detects methods that are
not implemented.

2.2 Blocks
A block closure in Smalltalk (also simply called “block”)
is the aggregation of an expression, a list of variables and
an environment. A block is similar in a sense to the
lambda construct offered by Lisp languages and repre-
sents a reasonable approximation of mathematical func-
tions. A block may be applied to a list of values, which
evaluates its expression in its environment extends with
the new bindings. The environment of a block is the cur-
rent environment (usually a method or block activation)
when the block is created. In the Counter example, the
block [:i |self increment] is evaluated within the body of
the to:do: method with the incrementing integer value.

Java’s inner classes present few similarities with
Smalltalk’s blocks since they are both attached to an en-
closing environment. A Smalltalk block is translated into
a Java inner class, itself a subclass of SmallBlock. As an
illustration, consider the simple Smalltalk block [:x | x +
10]. The translation into Java produces:

new SmallBlock () {
public SmallObject value(SmallObject x) {

return x.add(new SmallInteger(10));
}}

Evaluation of this block is achieved by sending the
message value(...) to it. The SmallBlock class offers sev-
eral methods related to the evaluation of a block. The
main methods are:

public class SmallBlock extends SmallObject {
public SmallObject value()

{System.err.println(”Wrong number of arguments”);
return this.typeError(); }

public SmallObject value(SmallObject o1)
{System.err.println(”Wrong number of arguments”);
return this.typeError(); }

public SmallObject valuevalue(SmallObject o1,
SmallObject o2)

{System.err.println(”Wrong number of arguments”);
return this.typeError(); }

4



...
}

A Smalltalk block is translated into an inner class, sub-
class of SmallBlock. One of SmallBlock’s methods is
overridden to proceed the evaluation of the block body.
This method will be invoked to evaluate the block. The
other evaluating methods of SmallBlock invoke typeEr-
ror(), which raises a runtime error. This occurs when at-
tempting to evaluate a block with the wrong number of
arguments.

Translating blocks requires a special care when dealing
with the self reference and accessing temporary variables.
The this needs to be dereferenced to the outer object to ac-
cess the current object. Consider the following illustrative
method:

Counter>> reset
[ value := self value - value ] value

This method is translated into Java as:

public SmallObject reset() {
(new SmallBlock() {

public SmallObject value() {
return Counter.this.value =

Counter.this.value().minus(Counter.this.value);
}}).value();

}

A Smalltalk block may contain a return statement; if
this block is executed, it returns not only from the block
but from the lexically enclosing method (provided it’s still
active – if not, you get an exception). The following ex-
ample illustrates this situation:

DiskEraser>> erase
result := Dialog

confirm: ’Are you sure you want to erase your hard drive?’
onCancelDo: [ ˆself ].

self erase.

Canceling the dialog will return self. Evaluating [ ˆself
] exits the method. Similarly to #Smalltalk5, a compiler
Smaltalk to CLI for .Net, non-local returns uses excep-
tion to prematurely exit the method. The erase method is
translated as follows:

5http://www.refactory.com/Software/SharpSmalltalk

public SmallObject erase() {
try {

result := Dialog.theClass().confirmonCancelDo(
”Are you sure you want to erase your hard drive?”,
new SmallBlock () {

public SmallObject value() {
throw ReturnInBlock(this);

}});
this.erase;
return this;

} catch (ReturnInBlock e) { return e.getValue();}
}

A longer discussion on translating Smalltalk blocks
into Java may be found in the Engelbrecht and Kourie’s
work [2].

2.3 Object model
Each object-oriented programming language comes with
its object model. By object model we mean all the fea-
tures provided by a programming language that are related
closely or not to the concept of object. We will not present
the differences between the Smalltalk and the Java object
model. Several excellent works may be found in the lit-
erature [4, 8]. Instead, we list the features present in the
Smalltalk object model that differs from the Java one or
are result of a non-trivial translation:

• Metaclasses – In Smalltalk, classes are modeled as
objects. A class is therefore an instance of another
class, called a metaclass. Class references are ma-
nipulable as any plain object: message can be in-
voked on them and class reference may be passed
as arguments. Metaclasses enables its instances to
understand polymorphic calls.

Java does not support metaclasses. Mapping each
Smalltalk class method into a static Java method pre-
vent therefore dynamically look up. Instead, we as-
sociate a Java object to each Smalltalk class. Each
reference to a class returns this object. For example,
consider the following Smalltalk code excerpt:

Counter class>> fromFactory: aFactoryClass
ˆaFactoryClass new newCounter

The presence of class methods implies the presence
of a meta-class. The translation will therefore be:

5

http://www.refactory.com/Software/SharpSmalltalk


public class Counter extends SmallObject {
private static SmallObject theClass =

new Counter Class();
public static theClass () { return theClass; }
...

}

public class Counter Class extends SmallObject Class {
public SmallObject fromFactory

(SmallObject aFactoryClass) {
return aFactoryClass.theClass().

new().newCounter();
}

}

• Reflection – Smalltalk supports an extensive panel
of reflective features ranging from method reification
to dynamic field and method addition [1]. Unfortu-
nately, when projected to Java, Smalltalk’s reflective
capabilities are greatly diminished due to (i) the ab-
sence of mechanisms to alter the class behavior and
structure (i.e., intercession) and to (ii) a limited range
of introspective features.

• Current method context – Smalltalk enables the
method call stack to be reified using the dedicated
thisContext pseudo variable. thisContext refers to an
instance of the MethodContext Smalltalk class which
contains information related to the last method call.

Since the Java method activation context cannot be
reified, thisContext is therefore not supported by our
translator.

2.4 Exception handling
Java’s exception handling model is a subset of
Smalltalk’s. In Java, the unique operation that can be per-
formed on a caught exception is to be throw again (in or-
der to be caught later on by a parent exception handler).
Smalltalk offers a number of additional operations such
as resume, restart, and retry, to resume the program ex-
ecution at different location when an exception has been
thrown. When translated into Java, Smalltalk exceptions
are restricted to Java possibilities.

When translated into Java, exception classes are im-
plemented as subclasses of SmallException is a sub-
class of SmallObject and is the root of all Smalltalk ex-
ception classes. The signal method is used to throw

Application Application

Glue

Smalltalk runtime Java runtime

Before translation After translation

Figure 2: A glue between the translated Smalltalk applica-
tion and the Java runtime simulates the original Smalltalk
runtime.

an exception. It throws an instance of a subclass of
java.lang.RuntimeException, which is then later on caught
by the method on:do:. We recall that Java runtime excep-
tions do not need to be declared in the Java method signa-
ture.

2.5 Separating the application from the
runtime

“Everything is an object” is probably one of the strongest
pillar of the Smalltalk paradigm. Everything is an object,
therefore every object is an instance of a class, which is
also an object. Delimiting an application from the run-
time is reputed to be a tough task that cannot be correctly
automated (mainly because of the lack of a static type sys-
tem).

In order to be translated into Java, a Smalltalk appli-
cation needs to be correctly separated from the Smalltalk
runtime. Although a translation of the whole Smalltalk
image is possible, translating the primitives offered by the
Squeak Smalltalk virtual machine into Java is far from
being a trivial task. Smalltalk primitives related to con-
currency, threads, graphics display largely differ from the
ones provided by the Java virtual machine.

A Smalltalk application is closely tied to the runtime
provided by the programming environment. This runtime
comprises a large amount of features accessible within
this environment such as the class collection hierarchy,
streams, networking, input/output, language kernel, and
graphical user interfaces. An application has naturally
many connections with the runtime expressed in terms of
class reference and use of literals objects. When translat-
ing a Smalltalk application into Java, a glue has to be lay-

6



ered between the Java runtime and the Smalltalk applica-
tion. As illustrated in Figure 2, the glue offers class wrap-
pers that make the Java runtime behaves as the Smalltalk
one.

In order for an application to be translated, no external
reference must be left unbounded by the glue. An exter-
nal reference contained in the Smalltalk application that
would not be defined in the glue cannot be bound to a
definition, which would prevent the translation from be-
ing compilable.

For example, the Transcript global variable in Smalltalk
is replaced by a Java Transcript class that offers static
methods such as show(...), cr(). This class is part of the
glue. Although the contract implicitly attached to the
Transcript variable is not fully preserved with this glue
(e.g.,Transcript is a variable whereas in Java it is a class),
definitions provided by the glue preserve the original be-
havior of the Smalltalk application.

3 Benchmarks

This section gives an overview that compares the
Smalltalk and Java version execution time length for a set
of examples. We measured performances of four impor-
tant facets of the translation: block evaluation, polymor-
phic calls, operations over primitive values (number, char-
acters, boolean) and exception handling. Our benchmarks
compare the Squeak’s virtual machine with Java’s6. Our
goal is not to bash on Squeak, but rather to identify per-
formance bottlenecks. The result of these benchmarks are
summarized in the following table:

6The Squeak 3.8.12beta4U and the JVM 1.5.0 13 on a MacBook
with 2Gb of memory were used for this experiment

Application Smalltalk (ms) Java (ms) Ratio
Block clo-
sures

835 145 5.7

Polymorphic
calls

379 85 4.4

Exception
handling

8673 1256 6.9

Arithmetic
operations

212 510 0.4

Athena (stack
intensive)

2913 512 5.6

Athena (poly-
morphic calls)

951 269 3.5

We realized 2 sets of benchmarks. The first 4 bench-
marks consist in evaluating 1 millions times an expression
related to a particular aspect of the Smalltalk language:

• Blocks closure – As described previously (Sec-
tion 2.2), Smalltalk blocks are translated into inner
classes. The gain is of a factor 5.7.

• Polymorphic calls – Three message sends crawl
over a class hierarchy (depth 8). The factor gain is
4.4.

• Arithmetic operations – The expression evaluated
consists of 4 addition and 4 multiplication of inte-
gers. The Java version of this measurement is 2.4
times slower than the Smalltalk version (ratio 0.4).

When translated into Java, Smalltalk numbers are
implemented by wrapping Java values. This has the
benefit to reuse the Java arithmetic operators and en-
coding of numbers. However, each arithmetic oper-
ation necessitates to unwrap the operands, performs
the operation on Java values, then wraps the result
into a SmallInteger. This combination of unwrapping
and wrapping significantly raises the cost of num-
ber manipulation. We expect a type feedback mech-
anism or an inference mechanism to significantly cir-
cumvent this limitation.

• Exception handling – Throwing and catching an ex-
ception is naturally a costly operation. This opera-
tion is almost 7 times faster in Java. This is easily
explained since the Java exception handling model

7



is simpler and does not require a reification of the
method call stack.

In addition to these micro-benchmarks, we provide two
benchmarks that employ Athena7, a Smalltalk virtual ma-
chine written in Smalltalk. Virtual machine construction
is probably one of the application domains that benefits
the most from source code translation. Virtual machines
are complex applications that require a significant soft-
ware engineering effort. Athena consists of more than a
thousand lines of Smalltalk code spread over four classes.

Two macro benchmarks are based on running Athena
in two different settings. The first situation makes an in-
tensive use of recursive method call. The later case heav-
ily employs polymorphic calls. The corresponding gain
factors are 5.6 and 3.5, respectively. These results cor-
respond to the average performance gain an application
benefit by being translated into Java.

This set of micro and macro benchmarks illustrates the
practicability of the transformation process previously de-
scribed without engaging a type inference mechanism.

4 Discussion
This section discusses and analyses various aspects of the
code translation.

Constructor. Smalltalk does not provide a notion of con-
structor. Some dialects such as Squeak invokes initialize
on the newly created object. The result of the expression
Object new will be the result of Object>> initialize. It is
expected that initialize returns the object initialize. For ex-
ample, let us assume a method such as:

C>> initialize
ˆ2

Evaluating C new will return 2, instead of an instance
of C. When translated into Java, whatever the value
returned by initialize, an instance of C will always be
returned. This strategy used by our translator hasn’t lead
to any problematic situation so far.

Typing Smalltalk programs. To cope with the Java type
system, SmallObject defines an empty method for each

7http://bergel.eu/athena

Smalltalk message that can be sent. This strategy thwarts
the Java type system in statically detecting type misuses.
This strategy assumes that the Smalltalk application is
correctly typed since Java cannot type check it.

An alternative would be to leave the user annotates the
Smalltalk program with Java type information. In Slang,
the subset of Smalltalk that is mappable to the C language,
requires the programmer to specify the C type of each
variable. Methods are manually annotated in order to pro-
duce properly typed methods. For example, having self
returnTypeC: ’char *’ in a method will set the return type
of the C function to char *.

Some approaches have been proposed to statically
type check Smalltalk programs. For example, a popular
implementation8 has been proposed by Roel Wuyts.
This type checker infers the type of instances variables
based on messages sent. Unfortunately, knowing the
type of instance variables will not leverage the mitigated
performance on arithmetic operations.

Source code translation versus bytecode generation.
Translating Smalltalk code into Java has few advantages
over bytecode generation. For example, adjusting the gen-
erated code is easier over source code than bytecode. We
initiated an experiment over Java micro edition, and the
necessary adjustment were produced in a couple of hours.

5 Related Work
Kermeta. By being an extension of EMOF, the Kermeta
workbench9 is a metaprogramming environment based on
an object-oriented domain specific language optimized
for metamodel engineering. At the first glance, Kermeta
looks like any programming language for general pur-
poses: it includes control structure such as blocks, loop,
conditional; it supports traditional object-oriented con-
structions; and enables interaction with Java. Kermeta
offers specific constructions for expressing models such
as property, which generalizes the notions of attributes,
and associations (composite or not) that you can find in
UML.
Xion. Xion is an action language for UML class dia-
grams; it is used to provide a high level platform inde-

8http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper
9http://www.kermeta.org

8

http://bergel.eu/athena
http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper
http://www.kermeta.org


pendent implementation of operations and methods [6].

6 Conclusion
This paper presents a strategy to translate Smalltalk into
Java. The translation operates on a sub-set of Smalltalk.
Few restrictions on the program to be translated are neces-
sary to cope with the Java execution model.The case study
we conducted suggests that these restrictions should not
be significantly disturbing for the programmer.

New modeling languages are regularly popping up
from the Modeling research community. The question
rose by this paper is: Whether Smalltalk may be success-
fully used in place were mainstream modeling languages
succeeded? This is a broad question that this paper
partially answer by assessing model transformation and
code generation toward Java.

Acknowledgement. We gratefully thank Noury
Bouraqadi, Stéphane Ducasse, Serge Stinckwich, Math-
ieu Suen and Jan Vrany for their valuable reviews and
comments.

References
[1] M. Denker. Sub-method Structural and Behavioral

Reflection. phd thesis, University of Bern, May 2008.

[2] R. Engelbrecht and D. Kourie. Translating smalltalk
blocks to java. Software, IEE Proceedings,
150(3):203–211, June 2003.

[3] A. Goldberg and D. Robson. Smalltalk-80: The Lan-
guage. Addison Wesley, 1989.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification (Third Edition). Addi-
son Wesley, 2005.

[5] T. Mens and P. V. Gorp. A taxonomy of model
transformation. Electr. Notes Theor. Comput. Sci.,
152:125–142, 2006.

[6] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In

S. K. L. Briand, editor, Proceedings of MOD-
ELS/UML’2005, volume 3713 of LNCS, pages 264–
278, Montego Bay, Jamaica, Oct. 2005. Springer.

[7] P.-A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pol-
let, F. Fondement, P. Studer, and J.-M. Jézéquel. On
executable meta-languages applied to model transfor-
mations. Model Transformations In Practice Work-
shop, oct 2005.

[8] F. Rivard. Smalltalk: a reflective language. In Pro-
ceedings of REFLECTION ’96, pages 21–38, Apr.
1996.

9


	Introduction
	Translating Smalltalk into Java
	Type
	Blocks
	Object model
	Exception handling
	Separating the application from the runtime

	Benchmarks
	Discussion
	Related Work
	Conclusion

