
Dynamic AOP 
with Dynamic 

Classboxes and 
Friends

Alexandre Bergel
bergel@iam.unibe.ch

Software Composition Group
Universität Bern, Switzerland



Alexandre Bergel 2

Outline

1. Why do we need dynamic AOP?
2. Classboxes: Class extensions as aspects
3. PROSE: Event-based and JIT compilation
4. Steamloom: Run-time speed as a major concern
5. AspectS: High flexibility
6. Evaluation
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AspectJ: manipulating source code 

• Sophisticated mechanism for source-code 
transformation.

• Weaving done before compile time.
• Aspects are “weaved” away. 
• Aspect does not exist at run-time.
• Applying an aspect can break already existing clients.
• Aspects have a global impact. 
• Does not fit to bring unanticipated changes on an 

running application!
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Security and Aspects

• With classboxes [9] security issues are addressed by 
emphasizing locality of aspects.

• Classboxes does not offer join-points such as 
before/after or around but use class extension to 
define aspects.

• Does not need any source source.
• Classboxes exist at run-time, and their configuration 

are completely dynamic. 
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Class extension

• Adding a new instance variable, a new method or 
redefining one on an already existing class is a class 
extension.

• Decoupling a class definition from field and method 
definitions

• Relevant: HyperJ, AspectJ, Smalltalk, CLOS, ...
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Class extensions as cross-cutting aspect

AST

Element

Add Number

Evaluate

evaluate

evaluate evaluate

With AspectJ:
  - Global Scope
  - At Compilation Time

Consequences:
 - Static Configuration
 - Client might break
 - Conflicts may appear
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Resolving class-extension conflicts

WebServer

Server LogPackage

handleRequest Logger
log

SecurePack

Crypter crypt
decrypt
log

Conflict with
the log method
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Aspects with Classboxes

• An aspect is a set of definitions (classes) and 
extensions (methods, instance variables).

• Can be dynamically installed and uninstalled.
• Class extensions are visible only in the classbox 

that define them and in other classboxes that 
import the extended class.

• Applying an aspect does not break former clients.
• Two aspects cannot conflict with each other.
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The classbox model

• A classbox is a unit of scoping (it behaves as a namespace).
• Within a classbox:

– Classes can be defined
– Classes can be imported from other classboxes
– Methods and instance variables can be defined on any 

visible class
– Dynamically installed and uninstalled

• Local methods redefinitions take precedence over previous 
definitions
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Cellphone Example
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Cellphone Example
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Cellphone Example
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Cellphone Example

• There is one hierarchy of graphical elements
• Which is extended with a color concern. But 

these extensions are scoped.
• From the point of view of the internal screen 

elements are colored
• But from the point of view of the external one 

they are colorless.



Alexandre Bergel 14

Different view of a hierarchy
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Both Screens are Colored
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Implementation

• In Squeak but applicable to other OO languages 
(Ruby, ...).

• New method lookup semantics.
• No need to modify the VM.
• No cost for method additions.
• Cache for redefined methods.
• Checking the cache validity need 5 extra bytecodes 

placed at the beginning of the redefined method.
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Cache Mechanism (1/4)
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Cache Mechanism (2/4)
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Cache Mechanism (3/4)
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Cache Mechanism (4/4)
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PROSE 1

• The Java Virtual Machine Debugger Interface 
(JVMDI) triggers some execution events.

• PROSE 1 [3] provides some notification handlers for 
events like: method entry, method exit, field access, 
field modification.

• Handlers can be added, removed and replaced at 
run-time.

• Managing events offers low performance.
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Example with PROSE 2 (1/3)

Weaving location specific access control at the start of 
methods defined in AService:

class SecurityAspect extends Aspect{
Crosscut accCtrl = new MethodCut(){

public void ANYMETHOD(AService thisO, REST anyp){
//Advice that check the access

 }
{// ... && before m*(...) && instanceof(Remote)
setSpecializer(

(MethodS.BEFORE) .AND
(MethodS.named(”m.*”)) .AND
(TargetS.inSubclass(Remote.class)) );

}
}

}
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PROSE 2: Architecture (1/2)
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PROSE 2: Architecture (2/2)

• In the upper layer, the AOP engine accepts aspects 
(a) and transforms them into basic entities like join-
point requests (2.1-2.4).

• It activates the join-point by register them to the 
execution monitor (3).

• When the execution reaches one of the activated 
join-points, the execution monitor notifies the AOP 
engine (4) which then executes an advice (5).
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PROSE 2: Performances

• PROSE 2 [3] is based on a modified IBM Jikes JVM.
• Hooks are inserted and called at every point that 

may be a joint point regardless of whether there is 
advice code associated with it or not.

• Decorated virtual method calls are slowed down up 
to 8.8 times!
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Steamloom

• Performance is one of the main concern with 
Steamloom [3].

• It add a new keyword deploy(anAspect) {...} in 
the the language.

• Aspects can either be local to a thread or to a set of 
instances.

• Details will be presented by Mira Mezini.
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Dynamic and static types languages

• Mainly because of the static type system, dynamic 
method introduction are not allowed.

• Limited number of join-points can be hooked:
– Prose does not handle cflow
– Steamloom has some difficulty with around 

• Better flexibility with a dynamic typed language.
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AspectS

• AspectS is implemented in Squeak, an open-source 
Smalltalk [7, 8].

• An Aspect is a set of advices.
• An advice is a set of JointPoints and a qualifier
• A JointPoint refers to a class and one of its method.
• An AdviceQualifier used to restrict the advice to a 

subset of instances and to restrict the join point to a 
particular control flow.

• 5 kinds of advices: exception handler, before/after, 
around, introduction, cflow.
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Example: Tracing a factorial

In Squeak, the factorial is implemented as:
Integer>>factorial

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: ‘Not valid for negative integers’.

It is invoked by sending a message factorial to an 
integer
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Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock: 
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]
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Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised
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Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfAllButFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock: 
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]
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Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised
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Implementation

• Based on John Brant’s method wrapper, a mechanism 
to add behavior to a compiled Smalltalk method.

• Sending the uninstall message.
• Weaving and unweaving at run-time.

C

doSthg
CompiledMethod

C

doSthg
CompiledMethodWrapper

Weaving:
aspect installation

Unweaving:
aspect uninstallation
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Taxonomy (inspired from [4])

• Common characteristic: 
– Time of change: run-time

• Classboxes:
– Language model: use of reflection
– Object of change: class extension (variable addition, method 

addition or redefinition)
– Scope: classbox
– Kind of evolution: atomic modification of a group of classes

• PROSE
– Language model: VM + dynamic Support
– Object of change: before/after field and method access
– Scope: global
– Kind of evolution: advises
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Taxonomy

• Steamloom
– Language model: VM Support
– Object of change: before/after field and method access 

+cflow
– Scope: a set of instances and a thread
– Kind of evolution: advises

• AspectS
– Language model: use of reflection
– Object of change: before/after/around field and method 

access + cflow
– Scope: global
– Kind of evolution: advises + class modificiations
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Lesson learnt

• Some kind of applications require to be updated 
without being stopped and then restarted.

• Classboxes limit the impacts of aspects defined as a 
set of class extensions (variable addition, method 
additions and redefinitions).

• Dynamic AOP requires to have a first class 
representation of aspect (different than AspectJ and 
HyperJ).

• Many issues with static type languages (no 
introduction and limited number of join-points).

• It is always a compromise between flexibility (e.g., 
AspectS) and speed performances (e.g., Steamloom).
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