Dynamic AOP
with Dynamic
Classboxes and
Friends
Alexandre Bergel .
bergel@iam.unibe.ch

Software Composition Group
Universitat Bern, Switzerland

®

Outline

Why do we need dynamic AOP?

Classboxes: Class extensions as aspects

PROSE: Event-based and JIT compilation
Steamloom: Run-time speed as a major concern
AspectS: High flexibility

Evaluation

oA WDN —

Alexandre Bergel 2

Aspect]: manipulating source code

+ Sophisticated mechanism for source-code
transformation.

* Weaving done before compile time.

- Aspects are “weaved” away.

- Aspect does not exist at run-time.

- Applying an aspect can break already existing clients.

- Aspects have a global impact.

- Does not fit to bring unanticipated changes on an
running application!

Alexandre Bergel

Security and Aspects

+ With classboxes [9] security issues are addressed by
emphasizing locality of aspects.

+ Classboxes does not offer join-points such as

before/after or around but use class extension to
define aspects.

-+ Does not need any source source.

- Classboxes exist at run-time, and their configuration
are completely dynamic.

Alexandre Bergel 4 '
LA

Class extension

StringPack UrlPack

String Url
asUrl

- Adding a new instance variable,a new method or
redefining one on an already existing class is a class
extension.

+ Decoupling a class definition from field and method
definitions

- Relevant: Hyper], Aspect|, Smalltalk, CLOS, ...

Alexandre Bergel 3

Class extensions as cross-cutting aspect

AST Evaluate
Element
evaluate
Add Number
evaluate evaluate
| | | |
: Consequences:
With Aspect): - Stati(c:I Configuration
- Global Scope

- Client might break
- Conflicts may appear

Alexandre Bergel 6 '
L 2

- At Compilation Time

Resolving class-extension conflicts

Conflict with
the log method

SecurePack

WebServer

Server

LogPackage

handleRequest

log

Logger

Crypter

crypt
decrypt

log

Alexandre Bergel

Aspects with Classboxes

+ An aspect is a set of definitions (classes) and
extensions (methods, instance variables).

+ Can be dynamically installed and uninstalled.

- Class extensions are visible only in the classbox
that define them and in other classboxes that
import the extended class.

- Applying an aspect does not break former clients.

+ Two aspects cannot conflict with each other.

Alexandre Bergel

The classbox model

- A classbox is a unit of scoping (it behaves as a namespace).
- Within a classbox:

- Classes can be defined

- Classes can be imported from other classboxes

- Methods and instance variables can be defined on any

visible class

- Dynamically installed and uninstalled

- Local methods redefinitions take precedence over previous
definitions

Alexandre Bergel 9 '
LA

Cellphone Example

Alexandre Bergel

GraphicCB

Element

/

\

Line

Text

draw

draw

* import

class
extension

Cellphone Example

ColorCB
' Element
, color i
EsetCoIor:E
+ Line i 1 Text
: draw | :draw

Alexandre Bergel

GraphicCB

Element

/

\

Line

Text

draw

draw

* import

class
extension

Cellphone Example

ColorCB

' Element |
rcolor i

setColor: :

+ Line i 1 Text
: draw | :draw
4
I
InternalScreenCB | |
MenuNavigatior I,_ine —
Text new.
run

Alexandre Bergel

GraphicCB

Element

/

\

Line

Text

draw

draw

ExternalScreenCB| |

Displaylnfo "5ichew.
Text new.
run
_———

* import

class
extension

Cellphone Example

+ There is one hierarchy of graphical elements

* Which is extended with a color concern. But
these extensions are scoped.

* From the point of view of the internal screen
elements are colored

* But from the point of view of the external one
they are colorless.

Alexandre Bergel 13 '
L2

Different view of a hierarchy

Graphical

Element
color

RN

Point Line

draw draw
\ I

Use the color
variable

From a colored
screen

Alexandre Bergel

Graphical
Element

N

Point Line
draw draw
\ /
\ /

colorless
implementation

From a colorless
screen

w

R 4

Both Screens are Colored

ColorCB

1 Elem

ent

rcolor

setColor: :

InternalScreenCB

MenuNavigatior

Line new.

Text new.

run

e—

Alexandre Bergel

GraphicCB

Element

Line Text
draw draw
-y

-

ExternalScreenCB

- |
Displaylnfo "5ichew.
Text new.
run
_———

* import

class
extension

Implementation

+ In Squeak but applicable to other OO languages
(Ruby, ...).

+ New method lookup semantics.

* No need to modify the VM.

* No cost for method additions.

+ Cache for redefined methods.

+ Checking the cache validity need 5 extra bytecodes
placed at the beginning of the redefined method.

Alexandre Bergel l6

Cache Mechanism (1/4)

In model

CBI

In memory

Class Definition
®

Alexandre Bergel 17 '
L2

Cache Mechanism (2/4)

CBI
A

foo

Alexandre Bergel 18

In model

In memory

Method Definition

w

R 4

Cache Mechanism (3/4)

In model

In memory

CBI CB2
N R T A
foo ;foo :
L
A CM1
foo—

Alexandre Bergel

/
\

CM2

Method Redefinition

w

R 4

Cache Mechanism (4/4)

CBI

A

> - -

foo

In model

Alexandre Bergel

CM2’

In memory

M1
/C
\

CM2

Method execution: A new foo

20

w

R 4

PROSE |

+ The Java Virtual Machine Debugger Interface
(JVMDI) triggers some execution events.
+ PROSE | [3] provides some notification handlers for

events like: method entry, method exit, field access,
field modification.

+ Handlers can be added, removed and replaced at
run-time.

+ Managing events offers low performance.

Alexandre Bergel 2l '
L 2

Example with PROSE 2 (1/3)

Weaving location specific access control at the start of
methods defined in AService:

class SecurityAspect extends Aspect{
Crosscut accCtrl = new MethodCut(){
public void ANYMETHOD (AService thisO, REST anyp){
//Advice that check the access

}
{// ... && before m*(...) && instanceof (Remote)
setSpecializer
(MethodS .BEFORE) .AND
(MethodS.named(”"m.*")) .AND
(TargetS.inSubclass (Remote.class)));
}

}

Alexandre Bergel 22 '
&

PROSE 2: Architecture (1/2)

Aspects | (1)
Y

Join-Point Generator Weaver [

[.
search matches (2.1) . . Dynamic
static checks (2.2) execute advice (5.2) ‘ I AOP
create advice (2.3) dvhamic checks (5.1) ‘ |
create join—points (2.4) y ' | Engine

L - - - — — — —_—_C EF - — — — — - - - — — — — = F—-—-—--—=-=-==-= l
stop requests | (3) (joinPoint, AOP tag) | (4)
. .
Join-Point Callback I Execution
Manager Manager : Monitor
Java Virtual Machine Java Virtual Machine

Alexandre Bergel 23 '
L2

PROSE 2: Architecture (2/2)

+ In the upper layer, the AOP engine accepts aspects
(a) and transforms them into basic entities like join-
point requests (2.1-2.4).

- It activates the join-point by register them to the
execution monitor (3).

* When the execution reaches one of the activated
join-points, the execution monitor notifies the AOP
engine (4) which then executes an advice (5).

Alexandre Bergel 24 '
L 2

PROSE 2: Performances

+ PROSE 2 [3] is based on a modified IBM Jikes JVM.

+ Hooks are inserted and called at every point that
may be a joint point regardless of whether there is
advice code associated with it or not.

+ Decorated virtual method calls are slowed down up

to 8.8 times!

Alexandre Bergel 25

Steamlioom

- Performance is one of the main concern with
Steamloom [3].

- It add a new keyword deploy(anAspect) {...} in
the the language.

- Aspects can either be local to a thread or to a set of
Instances.

- Details will be presented by Mira Mezini.

Alexandre Bergel 26 '
L2

Dynamic and static types languages

+ Mainly because of the static type system, dynamic
method introduction are not allowed.

+ Limited number of join-points can be hooked:
- Prose does not handle cflow
- Steamloom has some difficulty with around

- Better flexibility with a dynamic typed language.

Alexandre Bergel 27

AspectS

- AspectS is implemented in Squeak, an open-source
Smalltalk [7, 8].

- An Aspect is a set of advices.

+ An advice is a set of JointPoints and a qualifier

+ A JointPoint refers to a class and one of its method.

- An AdviceQualifier used to restrict the advice to a
subset of instances and to restrict the join point to a
particular control flow.

- 5 kinds of advices: exception handler, before/after,
around, introduction, cflow.

Alexandre Bergel 28 '
L2

Example: Tracing a factorial

In Squeak, the factorial is implemented as:

Integer>>factorial
self = 0 ifTrue: [~ 1].

self > 0 ifTrue: [” self * (self - 1) factorial].

self error: ‘Not valid for negative integers’.

It is invoked by sending a message factorial to an
integer

Alexandre Bergel 25

Example: Tracing a factorial

To echo the initial reception of a factorial message.

adviceFactorialInFirst
" BeforeAfterAdvice
qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#CcfFirstC ass})
pointcut: [OrderedCollection with:
(JoinPointDescriptor
targetClass: Integer
targetSelector: #factorial)]

beforeBlock:
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]

Alexandre Bergel 30 '
L2

Example: Tracing a factorial

—]

Alexandre Bergel 31

Invocation Advised
@

R 4

Example: Tracing a factorial

To echo the initial reception of a factorial message.

adviceFactorialInFirst
" BeforeAfterAdvice
qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#CcfA|ButFirstCd ass})
pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock:
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]
Alexandre Bergel 32

Example: Tracing a factorial

Invocation Advised

Alexandre Bergel 33 '
L2

Implementation

- Based on John Brant’s method wrapper, a mechanism
to add behavior to a compiled Smalltalk method.

+ Sending the uninstall message.
* Weaving and unweaving at run-time.

Weaving:
aspect installation

C C
doSthg —AQ doSthg _AQ_Q
<::| Wrapper CompiledMethod

CompiledMethod

Unweaving:
aspect uninstallation

Alexandre Bergel 34 '
L 2

Taxonomy (inspired from [4])

- Common characteristic:
- Time of change: run-time

+ Classboxes:
- Language model: use of reflection
- Obiject of change: class extension (variable addition, method
addition or redefinition)
- Scope: classbox
- Kind of evolution: atomic modification of a group of classes

-+ PROSE
- Language model:VM + dynamic Support

- Obiject of change: before/after field and method access
- Scope: global
- Kind of evolution: advises

Alexandre Bergel 35 '
L2

Taxonomy

+ Steamloom
- Language model:VM Support
- Object of change: before/after field and method access
+cflow
- Scope: a set of instances and a thread
- Kind of evolution: advises

- AspectS
- Language model: use of reflection
- Object of change: before/after/around field and method
access + cflow
- Scope: global
- Kind of evolution: advises + class modificiations

Alexandre Bergel 36

Lesson learnt

+ Some kind of app
without being sto

ications require to be updated
bped and then restarted.

- Classboxes limit t

he impacts of aspects defined as a

set of class extensions (variable addition, method
additions and redefinitions).
+ Dynamic AOP requires to have a first class

representation of
Hyper)).

aspect (different than Aspect| and

+ Many issues with static type languages (no

introduction and |

imited number of join-points).

- It is always a compromise between flexibility (e.g.,
AspectS) and speed performances (e.g., Steamloom).

Alexandre Bergel

37 .'

Bibliography

|. Robert Hirschfeld: Aspect$ -A&‘-Oriented
Programming with Squeak. Internation
NetObjectDays 2002.
2. Andrei Popovici, Thomas Gross, an

Alonso: Dynamic weaving for t-
programming. AOSD’0 |
3. Christoph Bocksich, Machael t, Mira Mezini,

Klaus Ostermann. Virtual Machine Support for
Dynamic Join Points. AOSD’04

4. Jim Buckley, Tom Mens, Matthias Zenger, Awais
Rashid, Gunter Kniesel: Towards a Taxonomy of
Software Change.To appear in: Software
Maintenance and Evolut3i80n

Bibliography

5. Paolo Falcarin, Gustavo AIonso‘lware Architecture
Evolution through Dynamic AOP. | st Eur
Workshop on Software Architect
|CSE'04.

6. Mira Mezini, Klaus Ostermanng&ong
with Caesar. AOSD’03. ’

/. Dan Ingalls, Ted Kaehler, John ney, Scott Walace,
Alan Key: Back to the Future: the Story of Squeak, a
Practical Smalltalk Written in Itself. OOPSLA’97.

8. Squeak Home Page: http://www.squeak.org

9.Alexandre Bergel, Stephane Ducasse: Dynamically
Scoped Aspects with Classboxes. |[FDPA’04

39

