
Dynamic AOP
with Dynamic

Classboxes and
Friends

Alexandre Bergel
bergel@iam.unibe.ch

Software Composition Group
Universität Bern, Switzerland

Alexandre Bergel 2

Outline

1. Why do we need dynamic AOP?
2. Classboxes: Class extensions as aspects
3. PROSE: Event-based and JIT compilation
4. Steamloom: Run-time speed as a major concern
5. AspectS: High flexibility
6. Evaluation

Alexandre Bergel 3

AspectJ: manipulating source code

• Sophisticated mechanism for source-code
transformation.

• Weaving done before compile time.
• Aspects are “weaved” away.
• Aspect does not exist at run-time.
• Applying an aspect can break already existing clients.
• Aspects have a global impact.
• Does not fit to bring unanticipated changes on an

running application!

Alexandre Bergel 4

Security and Aspects

• With classboxes [9] security issues are addressed by
emphasizing locality of aspects.

• Classboxes does not offer join-points such as
before/after or around but use class extension to
define aspects.

• Does not need any source source.
• Classboxes exist at run-time, and their configuration

are completely dynamic.

Alexandre Bergel 5

Class extension

• Adding a new instance variable, a new method or
redefining one on an already existing class is a class
extension.

• Decoupling a class definition from field and method
definitions

• Relevant: HyperJ, AspectJ, Smalltalk, CLOS, ...

StringPack

String

UrlPack

asUrl

Url

Alexandre Bergel 6

Class extensions as cross-cutting aspect

AST

Element

Add Number

Evaluate

evaluate

evaluate evaluate

With AspectJ:
 - Global Scope
 - At Compilation Time

Consequences:
 - Static Configuration
 - Client might break
 - Conflicts may appear

Alexandre Bergel 7

Resolving class-extension conflicts

WebServer

Server LogPackage

handleRequest Logger
log

SecurePack

Crypter crypt
decrypt
log

Conflict with
the log method

Alexandre Bergel 8

Aspects with Classboxes

• An aspect is a set of definitions (classes) and
extensions (methods, instance variables).

• Can be dynamically installed and uninstalled.
• Class extensions are visible only in the classbox

that define them and in other classboxes that
import the extended class.

• Applying an aspect does not break former clients.
• Two aspects cannot conflict with each other.

Alexandre Bergel 9

The classbox model

• A classbox is a unit of scoping (it behaves as a namespace).
• Within a classbox:

– Classes can be defined
– Classes can be imported from other classboxes
– Methods and instance variables can be defined on any

visible class
– Dynamically installed and uninstalled

• Local methods redefinitions take precedence over previous
definitions

Alexandre Bergel 10

Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

import

class
extension

Alexandre Bergel 11

Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

import

class
extension

Alexandre Bergel 12

Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

InternalScreenCB

MenuNavigation

run

Line new.
Text new.
...

import

class
extension

ExternalScreenCB

DisplayInfo

run

Line new.
Text new.
...

Alexandre Bergel 13

Cellphone Example

• There is one hierarchy of graphical elements
• Which is extended with a color concern. But

these extensions are scoped.
• From the point of view of the internal screen

elements are colored
• But from the point of view of the external one

they are colorless.

Alexandre Bergel 14

Different view of a hierarchy

Graphical
Element

LinePoint

draw draw

colorless
implementation

Use the color
variable

Graphical
Element

color

LinePoint

draw draw

From a colorless
screen

From a colored
screen

Alexandre Bergel 15

Both Screens are Colored

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

InternalScreenCB

MenuNavigation

run

Line new.
Text new.
...

import

class
extension

ExternalScreenCB

DisplayInfo

run

Line new.
Text new.
...

Alexandre Bergel 16

Implementation

• In Squeak but applicable to other OO languages
(Ruby, ...).

• New method lookup semantics.
• No need to modify the VM.
• No cost for method additions.
• Cache for redefined methods.
• Checking the cache validity need 5 extra bytecodes

placed at the beginning of the redefined method.

Alexandre Bergel 17

Cache Mechanism (1/4)

A

Class Definition

CB1
A

In memory

In model

Alexandre Bergel 18

Cache Mechanism (2/4)

A
foo CM1

CB1
A

In memory

In model

foo

Method Definition

Alexandre Bergel 19

Cache Mechanism (3/4)

A
foo Dispatcher

CM1

CM2

In memory

In model

Method Redefinition

CB1
A

foo

CB2
A

foo

Alexandre Bergel 20

Cache Mechanism (4/4)

A
foo

Method execution: A new foo

Dispatcher

CM1

CM2
CM2’

cache check

In memory

In model
CB1

A

foo

CB2
A

foo

A new foo

Alexandre Bergel 21

PROSE 1

• The Java Virtual Machine Debugger Interface
(JVMDI) triggers some execution events.

• PROSE 1 [3] provides some notification handlers for
events like: method entry, method exit, field access,
field modification.

• Handlers can be added, removed and replaced at
run-time.

• Managing events offers low performance.

Alexandre Bergel 22

Example with PROSE 2 (1/3)

Weaving location specific access control at the start of
methods defined in AService:

class SecurityAspect extends Aspect{
Crosscut accCtrl = new MethodCut(){

public void ANYMETHOD(AService thisO, REST anyp){
//Advice that check the access

 }
{// ... && before m*(...) && instanceof(Remote)
setSpecializer(

(MethodS.BEFORE) .AND
(MethodS.named(”m.*”)) .AND
(TargetS.inSubclass(Remote.class)));

}
}

}

Alexandre Bergel 23

PROSE 2: Architecture (1/2)

Alexandre Bergel 24

PROSE 2: Architecture (2/2)

• In the upper layer, the AOP engine accepts aspects
(a) and transforms them into basic entities like join-
point requests (2.1-2.4).

• It activates the join-point by register them to the
execution monitor (3).

• When the execution reaches one of the activated
join-points, the execution monitor notifies the AOP
engine (4) which then executes an advice (5).

Alexandre Bergel 25

PROSE 2: Performances

• PROSE 2 [3] is based on a modified IBM Jikes JVM.
• Hooks are inserted and called at every point that

may be a joint point regardless of whether there is
advice code associated with it or not.

• Decorated virtual method calls are slowed down up
to 8.8 times!

Alexandre Bergel 26

Steamloom

• Performance is one of the main concern with
Steamloom [3].

• It add a new keyword deploy(anAspect) {...} in
the the language.

• Aspects can either be local to a thread or to a set of
instances.

• Details will be presented by Mira Mezini.

Alexandre Bergel 27

Dynamic and static types languages

• Mainly because of the static type system, dynamic
method introduction are not allowed.

• Limited number of join-points can be hooked:
– Prose does not handle cflow
– Steamloom has some difficulty with around

• Better flexibility with a dynamic typed language.

Alexandre Bergel 28

AspectS

• AspectS is implemented in Squeak, an open-source
Smalltalk [7, 8].

• An Aspect is a set of advices.
• An advice is a set of JointPoints and a qualifier
• A JointPoint refers to a class and one of its method.
• An AdviceQualifier used to restrict the advice to a

subset of instances and to restrict the join point to a
particular control flow.

• 5 kinds of advices: exception handler, before/after,
around, introduction, cflow.

Alexandre Bergel 29

Example: Tracing a factorial

In Squeak, the factorial is implemented as:
Integer>>factorial

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: ‘Not valid for negative integers’.

It is invoked by sending a message factorial to an
integer

Alexandre Bergel 30

Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock:
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]

Alexandre Bergel 31

Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised

Alexandre Bergel 32

Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfAllButFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock:
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]

Alexandre Bergel 33

Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised

Alexandre Bergel 34

Implementation

• Based on John Brant’s method wrapper, a mechanism
to add behavior to a compiled Smalltalk method.

• Sending the uninstall message.
• Weaving and unweaving at run-time.

C

doSthg
CompiledMethod

C

doSthg
CompiledMethodWrapper

Weaving:
aspect installation

Unweaving:
aspect uninstallation

Alexandre Bergel 35

Taxonomy (inspired from [4])

• Common characteristic:
– Time of change: run-time

• Classboxes:
– Language model: use of reflection
– Object of change: class extension (variable addition, method

addition or redefinition)
– Scope: classbox
– Kind of evolution: atomic modification of a group of classes

• PROSE
– Language model: VM + dynamic Support
– Object of change: before/after field and method access
– Scope: global
– Kind of evolution: advises

Alexandre Bergel 36

Taxonomy

• Steamloom
– Language model: VM Support
– Object of change: before/after field and method access

+cflow
– Scope: a set of instances and a thread
– Kind of evolution: advises

• AspectS
– Language model: use of reflection
– Object of change: before/after/around field and method

access + cflow
– Scope: global
– Kind of evolution: advises + class modificiations

Alexandre Bergel 37

Lesson learnt

• Some kind of applications require to be updated
without being stopped and then restarted.

• Classboxes limit the impacts of aspects defined as a
set of class extensions (variable addition, method
additions and redefinitions).

• Dynamic AOP requires to have a first class
representation of aspect (different than AspectJ and
HyperJ).

• Many issues with static type languages (no
introduction and limited number of join-points).

• It is always a compromise between flexibility (e.g.,
AspectS) and speed performances (e.g., Steamloom).

38

Bibliography

1. Robert Hirschfeld: AspectS - Aspect-Oriented
Programming with Squeak. International Conference
NetObjectDays 2002.

2. Andrei Popovici, Thomas Gross, and Gustavo
Alonso: Dynamic weaving for aspect-oriented
programming. AOSD’01

3. Christoph Bocksich, Machael Hapt, Mira Mezini,
Klaus Ostermann. Virtual Machine Support for
Dynamic Join Points. AOSD’04

4. Jim Buckley, Tom Mens, Matthias Zenger, Awais
Rashid, Günter Kniesel: Towards a Taxonomy of
Software Change. To appear in: Software
Maintenance and Evolution

39

Bibliography

5. Paolo Falcarin, Gustavo Alonso: Software Architecture
Evolution through Dynamic AOP. 1st European
Workshop on Software Architectures (EWSA) --
ICSE'04.

6. Mira Mezini, Klaus Ostermann: Conquering Aspects
with Caesar. AOSD’03.

7. Dan Ingalls, Ted Kaehler, John Maloney, Scott Walace,
Alan Key: Back to the Future: the Story of Squeak, a
Practical Smalltalk Written in Itself. OOPSLA’97.

8. Squeak Home Page: http://www.squeak.org
9. Alexandre Bergel, Stéphane Ducasse: Dynamically
Scoped Aspects with Classboxes. JFDPA’04

