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Dynamically Adapting an Application

• A lot of application cannot be halted in order to be 
updated: financial system, real-time monitoring, 
embedded system, ...

• Dynamic adaptation of a running application allows 
the application’s behavior to be changed without 
stopping and restarting it.
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Why Dynamic AOP?

• Strategy Pattern helps to produce adaptable 
applications, however all the ways an application will 
have to be adapted cannot be anticipated.

• AOP helps to define cross-cutting changes.
• Adapting an application by applying dynamically 

some AOP techniques
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Example: Embedded System in a Satellite

• HEDC is a satellite recently launched [4] intended 
to observe the sun and to build a catalog of events 
like sun flares.

• Data are accessible to scientists through a web 
service implemented with a java servlet.

• For each HTTP request a new session was created, 
leading to a performance degradation when the 
number of users was high.

• The system relies on a proprietary library, so the 
source code was not available.

• The fix was to replace the new Session() code.
• This example illustrates how useful DAOP can be.
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PROSE 1

• The Java Virtual Machine Debugger Interface 
(JVMDI) triggers some execution events.

• PROSE 1 [3] is based on providing some notification 
handlers for events like: method entry, method exit, 
field access, field modification.

• Handlers can be added, removed and replaced at 
run-time.

• Managing events offers low performance.
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Example with PROSE 2 (1/3)

Weaving location specific access control at the start of 
methods defined in AService:

class SecurityAspect extends Aspect{
Crosscut accCtrl = new MethodCut(){

public void ANYMETHOD(AService thisO, REST anyp){
//Advice that check the access

 }
{// ... && before m*(...) && instanceof(Remote)
setSpecializer(

(MethodS.BEFORE) .AND
(MethodS.named(”m.*”)) .AND
(TargetS.inSubclass(Remote.class)) );

}
}

}
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Example with PROSE 2 (2/3)

• Aspects are first-class entity
• An aspect extends the Aspect base class.
• It contains one or several crosscut objects.
• A crosscut object represents a modification that is 

applied on the base system when the aspect is 
installed.

• This crosscut object defines an advice and describes 
the join-points where the advice has to be executed.

• An advice is a piece of code executed when a join-
point is reached during the execution of the base 
system.
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Example with PROSE 2 (3/3)

• A join-point is a description of the code location 
where the execution must be interrupted in order 
to execute advice.

• The number and types of join-points defined by a 
crosscut object depend on the signature of the 
advice method.

• The specializer further restricts the set of join-
points to entries in methods whose name matches 
the regular expression “m.*”.

• Specializers are composable using NOT, AND and 
OR.
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PROSE 2: Architecture (1/2)
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PROSE 2: Architecture (2/2)

• In the upper layer, the AOP engine accepts aspects 
(a) and transforms them into basic entities like join-
point requests (2.1-2.4).

• It activates the join-point by register them to the 
execution monitor (3).

• When the execution reaches one of the activated 
join-points, the execution monitor notifies the AOP 
engine (4) which then executes an advice (5).
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PROSE 2: Performances

• PROSE 2 [3] is based on a modified IBM Jikes JVM.
• Use a modified version of the baseline compiler to 

insert code that checks for the presence of advice at 
every possible join point.

• Hooks are inserted and called at every point that 
may be a joint point regardless of whether there is 
advice code associated with it or not.

• Decorated virtual method calls are slowed down up 
to 8.8 times!
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How performance can be improved ?

• The cost of Prose is high because whenever a 
message is sent it has to be verified if an advice 
needs to be invoked or not.

• Performance is one of the main concern with 
Steamloom [3].

• It add a new keyword deploy in the the language.
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Aspect Deployment with Steamloom

Steamloom [3] is an implementation of Caesar [6].
It introduces a new keyword to weave “locally” an 
aspect.

The execution of a deploy statement with an aspect 
as a parameter triggers aspect weaving, i.e., the hooks 
needed to execute advice is added and deleted at run-
time.

deploy (anAspect) {
   // Weaving
   ...   // Code

// Unweaving
}
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Fibonacci Example (1/3)

public class App {
public void run () {

this.run(10);
}

public void fibstart (int n) {
this.fib(n);

}

public int fib (int k) {
return (k>1) ? fib(k-1)+fib(k-2) : k;

}
}
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Fibonacci Example (2/3)

public class FibonacciAspect {
private int ctr = -1;

before(): 
execution (void App.fibstart(int)) {ctr = 0; }

after(): 
execution (void App.fibstart(int)) {

System.out.println(ctr);}

before(): 
execution (int App.fib(int)) {ctr++; }

}
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Fibonacci Example (3/3)

Applying the aspect
deploy public class DeploymentAspect {

around(): call (void App.run()) {
deploy (new FibonacciAspect()) 

{proceed();}
}

}

proceed() triggers the original definition of run. The 
deploy statement weaves the fibstart and fib function 
with the aspect (new FibonacciAspect()).
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Scope of an aspect

• An aspect can either be local to a thread (advices 
are executed only for a particular thread, else they 
are ignored), or it can be attached to a particular 
instance.

• In the previous example, the FibonacciAspect is local 
to the thread that deploys it.

• A brief snippet of code is inserted before every call 
to advice functionality to check if it occurs on the 
right instance or in the right thread.
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Aspectual Polymorphism

The instance passed to deploy (that represents an 
aspect) can be the result of a computation:

deploy class FibDeployment {
around(): call (void App.run()){
FibonacciAspect l = null;
if (...) 
l = new FibonacciAspect();

else
l = new SubclassOfFibonacciAspect();

deploy (l) {proceed();}
}

}
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Just-in-time and Lazy Compilation

header, IVs, ...TIB

...

...

foo()

lazy compilation stub

foo() compiled method

foo() optimized code

1

2

3

an object

• Performance is a major concern for Steamloom [3].
• First call triggers the compilation and second one 

the optimization.
• TIB = Type Information Block. It contains pointers to 

all virtual methods of the class.
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Deployment of an instance-local aspect

• Deploying an aspect on an instance make this object 
point to a particular TIB
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Performance

• 4% of overhead compare to the IBM’s Java VM.
• Result from addition operations Steamloom 

performs at class-loading time and just-in-time 
compilation.
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AspectS

• Mainly because of the static type system, dynamic 
method introduction are not allowed.

• Limited number of join-points can be hooked:
– Prose does not handle cflow
– Steamloom has some difficulty with around 

• Better flexibility with a dynamic typed language.
• AspectS is implemented in Squeak, an open-source 

Smalltalk [7, 8].
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AspectS

• An Aspect is a set of advices.
• An advice is a set of JointPoints and a qualifier
• A JointPoint refers to a class and one of its method.
• An AdviceQualifier used to restrict the advice to a 

subset of instances and to restrict the join point to a 
particular control flow.

• 5 kinds of advices: exception handler, before/after, 
around, introduction, cflow.
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Example: Tracing a factorial

In Squeak, the factorial is implemented as:
Integer>>factorial

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: ‘Not valid for negative integers’.

It is invoked by sending a message factorial to an 
integer
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Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock: 
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]
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Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised
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Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfAllButFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock: 
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]
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Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised
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Implementation

• Based on John Brant’s method wrapper, a mechanism 
to add behavior to a compiled Smalltalk method.

• Sending the uninstall message.
• Weaving and unweaving at run-time.

C

doSthg
CompiledMethod

C

doSthg
CompiledMethodWrapper

Weaving:
aspect installation

Unweaving:
aspect uninstallation
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Security and Aspects

• Steamloom can bound the visibility of an aspect to a 
set of objects or to a particular thread.

• Does not modify the flow of the original application.
• Classboxes does not offer join-points such as 

before/after or around but use class extension to 
define aspects.
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Dynamic Scoped Aspects with Classboxes [9]

AST

Element

Add Number

Evaluate

evaluate

evaluate evaluate

With AspectJ:
  - Global Scope
  - At Compilation Time

Consequences:
 - Conflicts
 - Static Configuration
 - Client might break
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Aspects with Classboxes

• An aspect is a set of definitions (classes) and 
extensions (methods, instance variables).

• Can be dynamically installed and uninstalled.
• Class extensions are visible only in the classbox 

that define them and in other classboxes that 
import the extended class.

• Applying an aspect does not break former clients.
• Two aspects cannot conflict with each other.
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Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

import

class
extension
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Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

import

class
extension
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Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

InternalScreenCB

MenuNavigation

run

Line new.
Text new. 
...

import

class
extension

ExternalScreenCB

DisplayInfo

run

Line new.
Text new. 
...
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Cellphone Example

• There is one hierarchy of graphical elements
• Which is extended with a color concern. But 

these extensions are scoped.
• From the point of view of the internal screen 

elements are colored
• But from the point of view of the external one 

they are colorless.
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Both Screens are Colored

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

InternalScreenCB

MenuNavigation

run

Line new.
Text new. 
...

import

class
extension

ExternalScreenCB

DisplayInfo

run

Line new.
Text new. 
...
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Implementation

• In Squeak but applicable to other OO languages 
(Ruby, ...).

• New method lookup semantics.
• No need to modify the VM.
• No cost for method additions.
• Cache for redefined methods.
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Cache Mechanism (1/4)

A

Class creation
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Cache Mechanism (2/4)

A
foo CM1
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Cache Mechanism (3/4)

A

Method redefinition

foo Dispatcher
CM1

CM2
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Cache Mechanism (4/4)

A
foo

Method execution: A new foo

Dispatcher

CM1

CM2
CM2’

cache check
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Dynamic AOP

• Dynamic AOP requires to have a first class 
representation of aspect.

• Many issues with static type languages (no new 
method introduction, limited number of join-point)

• Use in Software Architecture Evolution [5]
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Different Approaches to Dynamic AOP

• Pre-runtime instrumentation
– Use of the EAOP preprocessor (EAOP, JAC, JBoss AOP, 

PROSE 2)
– Load-time (JAC, JBoss AOP)
– Just-in-time compiler (PROSE) 

• Run-time event monitoring
– PROSE 1

• Run-time weaving
– Wool
– AspectS
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