
Dynamic
Aspect-Oriented

Programming

Alexandre Bergel
bergel@iam.unibe.ch

Software Composition Group
Universität Bern, Switzerland

Alexandre Bergel 2

Outline

1. Why do we need dynamic AOP?
2. Example
3. PROSE: Event-based and JIT compilation
4. Steamloom: Run-time speed as a major concern
5. AspectS: High flexibility
6. Classboxes: Aspect as class extension
7. Evaluation

Alexandre Bergel 3

Dynamically Adapting an Application

• A lot of application cannot be halted in order to be
updated: financial system, real-time monitoring,
embedded system, ...

• Dynamic adaptation of a running application allows
the application’s behavior to be changed without
stopping and restarting it.

Alexandre Bergel 4

Why Dynamic AOP?

• Strategy Pattern helps to produce adaptable
applications, however all the ways an application will
have to be adapted cannot be anticipated.

• AOP helps to define cross-cutting changes.
• Adapting an application by applying dynamically

some AOP techniques

Alexandre Bergel 5

Example: Embedded System in a Satellite

• HEDC is a satellite recently launched [4] intended
to observe the sun and to build a catalog of events
like sun flares.

• Data are accessible to scientists through a web
service implemented with a java servlet.

• For each HTTP request a new session was created,
leading to a performance degradation when the
number of users was high.

• The system relies on a proprietary library, so the
source code was not available.

• The fix was to replace the new Session() code.
• This example illustrates how useful DAOP can be.

Alexandre Bergel 6

PROSE 1

• The Java Virtual Machine Debugger Interface
(JVMDI) triggers some execution events.

• PROSE 1 [3] is based on providing some notification
handlers for events like: method entry, method exit,
field access, field modification.

• Handlers can be added, removed and replaced at
run-time.

• Managing events offers low performance.

Alexandre Bergel 7

Example with PROSE 2 (1/3)

Weaving location specific access control at the start of
methods defined in AService:

class SecurityAspect extends Aspect{
Crosscut accCtrl = new MethodCut(){

public void ANYMETHOD(AService thisO, REST anyp){
//Advice that check the access

 }
{// ... && before m*(...) && instanceof(Remote)
setSpecializer(

(MethodS.BEFORE) .AND
(MethodS.named(”m.*”)) .AND
(TargetS.inSubclass(Remote.class)));

}
}

}

Alexandre Bergel 8

Example with PROSE 2 (2/3)

• Aspects are first-class entity
• An aspect extends the Aspect base class.
• It contains one or several crosscut objects.
• A crosscut object represents a modification that is

applied on the base system when the aspect is
installed.

• This crosscut object defines an advice and describes
the join-points where the advice has to be executed.

• An advice is a piece of code executed when a join-
point is reached during the execution of the base
system.

Alexandre Bergel 9

Example with PROSE 2 (3/3)

• A join-point is a description of the code location
where the execution must be interrupted in order
to execute advice.

• The number and types of join-points defined by a
crosscut object depend on the signature of the
advice method.

• The specializer further restricts the set of join-
points to entries in methods whose name matches
the regular expression “m.*”.

• Specializers are composable using NOT, AND and
OR.

Alexandre Bergel 10

PROSE 2: Architecture (1/2)

Alexandre Bergel 11

PROSE 2: Architecture (2/2)

• In the upper layer, the AOP engine accepts aspects
(a) and transforms them into basic entities like join-
point requests (2.1-2.4).

• It activates the join-point by register them to the
execution monitor (3).

• When the execution reaches one of the activated
join-points, the execution monitor notifies the AOP
engine (4) which then executes an advice (5).

Alexandre Bergel 12

PROSE 2: Performances

• PROSE 2 [3] is based on a modified IBM Jikes JVM.
• Use a modified version of the baseline compiler to

insert code that checks for the presence of advice at
every possible join point.

• Hooks are inserted and called at every point that
may be a joint point regardless of whether there is
advice code associated with it or not.

• Decorated virtual method calls are slowed down up
to 8.8 times!

Alexandre Bergel 13

How performance can be improved ?

• The cost of Prose is high because whenever a
message is sent it has to be verified if an advice
needs to be invoked or not.

• Performance is one of the main concern with
Steamloom [3].

• It add a new keyword deploy in the the language.

Alexandre Bergel 14

Aspect Deployment with Steamloom

Steamloom [3] is an implementation of Caesar [6].
It introduces a new keyword to weave “locally” an
aspect.

The execution of a deploy statement with an aspect
as a parameter triggers aspect weaving, i.e., the hooks
needed to execute advice is added and deleted at run-
time.

deploy (anAspect) {
 // Weaving
 ... // Code

// Unweaving
}

Alexandre Bergel 15

Fibonacci Example (1/3)

public class App {
public void run () {

this.run(10);
}

public void fibstart (int n) {
this.fib(n);

}

public int fib (int k) {
return (k>1) ? fib(k-1)+fib(k-2) : k;

}
}

Alexandre Bergel 16

Fibonacci Example (2/3)

public class FibonacciAspect {
private int ctr = -1;

before():
execution (void App.fibstart(int)) {ctr = 0; }

after():
execution (void App.fibstart(int)) {

System.out.println(ctr);}

before():
execution (int App.fib(int)) {ctr++; }

}

Alexandre Bergel 17

Fibonacci Example (3/3)

Applying the aspect
deploy public class DeploymentAspect {

around(): call (void App.run()) {
deploy (new FibonacciAspect())

{proceed();}
}

}

proceed() triggers the original definition of run. The
deploy statement weaves the fibstart and fib function
with the aspect (new FibonacciAspect()).

Alexandre Bergel 18

Scope of an aspect

• An aspect can either be local to a thread (advices
are executed only for a particular thread, else they
are ignored), or it can be attached to a particular
instance.

• In the previous example, the FibonacciAspect is local
to the thread that deploys it.

• A brief snippet of code is inserted before every call
to advice functionality to check if it occurs on the
right instance or in the right thread.

Alexandre Bergel 19

Aspectual Polymorphism

The instance passed to deploy (that represents an
aspect) can be the result of a computation:

deploy class FibDeployment {
around(): call (void App.run()){
FibonacciAspect l = null;
if (...)
l = new FibonacciAspect();

else
l = new SubclassOfFibonacciAspect();

deploy (l) {proceed();}
}

}

Alexandre Bergel 20

Just-in-time and Lazy Compilation

header, IVs, ...TIB

...

...

foo()

lazy compilation stub

foo() compiled method

foo() optimized code

1

2

3

an object

• Performance is a major concern for Steamloom [3].
• First call triggers the compilation and second one

the optimization.
• TIB = Type Information Block. It contains pointers to

all virtual methods of the class.

Alexandre Bergel 21

Deployment of an instance-local aspect

• Deploying an aspect on an instance make this object
point to a particular TIB

Alexandre Bergel 22

Performance

• 4% of overhead compare to the IBM’s Java VM.
• Result from addition operations Steamloom

performs at class-loading time and just-in-time
compilation.

Alexandre Bergel 23

AspectS

• Mainly because of the static type system, dynamic
method introduction are not allowed.

• Limited number of join-points can be hooked:
– Prose does not handle cflow
– Steamloom has some difficulty with around

• Better flexibility with a dynamic typed language.
• AspectS is implemented in Squeak, an open-source

Smalltalk [7, 8].

Alexandre Bergel 24

AspectS

• An Aspect is a set of advices.
• An advice is a set of JointPoints and a qualifier
• A JointPoint refers to a class and one of its method.
• An AdviceQualifier used to restrict the advice to a

subset of instances and to restrict the join point to a
particular control flow.

• 5 kinds of advices: exception handler, before/after,
around, introduction, cflow.

Alexandre Bergel 25

Example: Tracing a factorial

In Squeak, the factorial is implemented as:
Integer>>factorial

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: ‘Not valid for negative integers’.

It is invoked by sending a message factorial to an
integer

Alexandre Bergel 26

Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock:
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]

Alexandre Bergel 27

Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised

Alexandre Bergel 28

Example: Tracing a factorial

To echo the initial reception of a factorial message.
adviceFactorialInFirst
^ BeforeAfterAdvice

qualifier: (AdviceQualifier attributes:
{#receiverclassSpecific .#cfAllButFirstClass})

pointcut: [OrderedCollection with:
(JoinPointDescriptor

targetClass: Integer
targetSelector: #factorial)]

beforeBlock:
[:receiver :arguments :aspect :client|
Transcript show: ‘fac: ‘, self printString]

Alexandre Bergel 29

Example: Tracing a factorial

5 4 3 2 1 0

Invocation Advised

Alexandre Bergel 30

Implementation

• Based on John Brant’s method wrapper, a mechanism
to add behavior to a compiled Smalltalk method.

• Sending the uninstall message.
• Weaving and unweaving at run-time.

C

doSthg
CompiledMethod

C

doSthg
CompiledMethodWrapper

Weaving:
aspect installation

Unweaving:
aspect uninstallation

Alexandre Bergel 31

Security and Aspects

• Steamloom can bound the visibility of an aspect to a
set of objects or to a particular thread.

• Does not modify the flow of the original application.
• Classboxes does not offer join-points such as

before/after or around but use class extension to
define aspects.

Alexandre Bergel 32

Dynamic Scoped Aspects with Classboxes [9]

AST

Element

Add Number

Evaluate

evaluate

evaluate evaluate

With AspectJ:
 - Global Scope
 - At Compilation Time

Consequences:
 - Conflicts
 - Static Configuration
 - Client might break

Alexandre Bergel 33

Aspects with Classboxes

• An aspect is a set of definitions (classes) and
extensions (methods, instance variables).

• Can be dynamically installed and uninstalled.
• Class extensions are visible only in the classbox

that define them and in other classboxes that
import the extended class.

• Applying an aspect does not break former clients.
• Two aspects cannot conflict with each other.

Alexandre Bergel 34

Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

import

class
extension

Alexandre Bergel 35

Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

import

class
extension

Alexandre Bergel 36

Cellphone Example

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

InternalScreenCB

MenuNavigation

run

Line new.
Text new.
...

import

class
extension

ExternalScreenCB

DisplayInfo

run

Line new.
Text new.
...

Alexandre Bergel 37

Cellphone Example

• There is one hierarchy of graphical elements
• Which is extended with a color concern. But

these extensions are scoped.
• From the point of view of the internal screen

elements are colored
• But from the point of view of the external one

they are colorless.

Alexandre Bergel 38

Both Screens are Colored

GraphicCB

Line

draw

Text

draw

Element

ColorCB

Line

draw

Text

draw

Element
color

setColor:

InternalScreenCB

MenuNavigation

run

Line new.
Text new.
...

import

class
extension

ExternalScreenCB

DisplayInfo

run

Line new.
Text new.
...

Alexandre Bergel 39

Implementation

• In Squeak but applicable to other OO languages
(Ruby, ...).

• New method lookup semantics.
• No need to modify the VM.
• No cost for method additions.
• Cache for redefined methods.

Alexandre Bergel 40

Cache Mechanism (1/4)

A

Class creation

Alexandre Bergel 41

Cache Mechanism (2/4)

A
foo CM1

Alexandre Bergel 42

Cache Mechanism (3/4)

A

Method redefinition

foo Dispatcher
CM1

CM2

Alexandre Bergel 43

Cache Mechanism (4/4)

A
foo

Method execution: A new foo

Dispatcher

CM1

CM2
CM2’

cache check

Alexandre Bergel 44

Dynamic AOP

• Dynamic AOP requires to have a first class
representation of aspect.

• Many issues with static type languages (no new
method introduction, limited number of join-point)

• Use in Software Architecture Evolution [5]

Alexandre Bergel 45

Different Approaches to Dynamic AOP

• Pre-runtime instrumentation
– Use of the EAOP preprocessor (EAOP, JAC, JBoss AOP,

PROSE 2)
– Load-time (JAC, JBoss AOP)
– Just-in-time compiler (PROSE)

• Run-time event monitoring
– PROSE 1

• Run-time weaving
– Wool
– AspectS

46

Bibliography

1. Robert Hirschfeld: AspectS - Aspect-Oriented
Programming with Squeak. International Conference
NetObjectDays 2002.

2. Andrei Popovici, Thomas Gross, and Gustavo
Alonso: Dynamic weaving for aspect-oriented
programming. AOSD’01

3. Christoph Bocksich, Machael Hapt, Mira Mezini,
Klaus Ostermann. Virtual Machine Support for
Dynamic Join Points. AOSD’04

4. E. Stolte and G. Alonso. Efficient Exploration of Large
Scientific Databases. Intl. Conf. on Very Large
DataBases (VLDB), 2002

47

Bibliography

5. Paolo Falcarin, Gustavo Alonso: Software Architecture
Evolution through Dynamic AOP. 1st European
Workshop on Software Architectures (EWSA) --
ICSE'04.

6. Mira Mezini, Klaus Ostermann: Conquering Aspects
with Caesar. AOSD’03.

7. Dan Ingalls, Ted Kaehler, John Maloney, Scott Walace,
Alan Key: Back to the Future: the Story of Squeak, a
Practical Smalltalk Written in Itself. OOPSLA’97.

8. Squeak Home Page: http://www.squeak.org
9. Alexandre Bergel, Stéphane Ducasse: Dynamically
Scoped Aspects with Classboxes. JFDPA’04

