
Jitting Prolog for Fun and Profit

David Schneider
david.schneider@uni-

duesseldorf.de

Carl Friedrich Bolz
cfbolz@gmx.de

Michael Leuschel
leuschel@cs.uni-
duesseldorf.de

Heinrich-Heine-Universität Düsseldorf, STUPS Group, Germany

ABSTRACT
Most Prolog implementations are implemented in low-level
languages such as C and are based on a variation of the
WAM instruction set, which enhances their performance but
makes them hard to write. In addition, many of the more
dynamic features of Prolog (like assert), despite their pop-
ularity, are not well supported. We present a high-level
continuation-based Prolog interpreter based on the PyPy
project. The PyPy project makes it possible to easily and
efficiently implement dynamic languages. It provides tools
that automatically generate a just-in-time compiler for a
given interpreter of the target language, by using partial
evaluation techniques. The resulting Prolog implementa-
tion is surprisingly efficient: it clearly outperforms exist-
ing interpreters of Prolog in high-level languages such as
Java. Moreover, on some benchmarks, our system outper-
forms state-of-the-art WAM-based Prolog implementations.
Our paper aims to show that declarative languages such as
Prolog can indeed benefit from having a just-in-time com-
piler and that PyPy can form the basis for implementing
programming languages other than Python.1

1. INTRODUCTION
An often cited problem of dynamic languages is their rel-

atively slow performance compared to static languages. Of
course techniques for implementing such languages efficiently,
such as JIT compilation, are well known and have existed
since a long time [10, 14, 3]. Although writing a simple JIT
compiler is not a hard task, really achieving high perfor-
mance and portability is a hard and tedious undertaking.

Given these problems and the fact that different dynamic
languages often have common requirements in respect to
a JIT, it seems worthwhile to generalize the procedure of
creating such a JIT. This is the approach the PyPy project
has taken [5, 18].

Prolog is a popular logic programming language created
in the 70’s by Colmerauer and Roussel [7]. In addition
to its logic features it is a fully dynamic language provid-
ing dynamic typing, reflection on data structures and the
program itself. It is usually implemented using low level
languages and a specific virtual machine designed for Pro-
log (called Warren’s Abstract Machine, or WAM). Despite
the dynamic character of the language, to our knowledge

1This research is partially supported by the BMBF funded
project PyJIT (nr. 01QE0913B; Eureka Eurostars). A
greatly extended version of this paper has been submitted
to PPDP 2010.

no publicly available Prolog implementations have adopted
dynamic compilation techniques so far.

Our aim was to investigate the applicability of JIT tech-
niques to Prolog and whether PyPy’s JIT generator can be
applied to a logic programming language. We thus present
a Prolog interpreter written with the help of PyPy’s tools.
While writing the interpreter, we tried to follow the Prolog
semantics as closely as possible. The interpreter can be com-
piled to C and a JIT can be generated for it by the PyPy
JIT generator.

2. BACKGROUND

2.1 Prolog Implementations
Most high-performance implementations of the Prolog lan-

guage in common use today are implemented using an exten-
sion of the WAM [20, 19]. The WAM is a great instruction
set that made high-speed Prolog execution possible. How-
ever, it is also a very low-level instruction set that is predom-
inantly useful when implementing in a low-level language op-
erating close to the machine level. Apart from WAM-based
approaches, there are a number of Prolog implementations
written in object-oriented high-level languages, such as Java
or the C# [17, 8]. These often have flexible and extensi-
ble architectures, and integrate well with their host virtual
machine, but are typically orders of magnitude slower than
low-level VMs.

2.2 PyPy
The PyPy project [18, 6] is an environment where inter-

preters for dynamic languages can be implemented in a sim-
ple and maintainable, yet efficient, way. Using PyPy, the ap-
proach is to write an interpreter for the to-be-implemented
language in RPython, which is a subset of Python. RPython
is restricted in such a way, that type inference is possible and
therefore the interpreter can be translated into C. During
the translation process, various aspects of the final VM will
be introduced into the C code automatically, such as an effi-
cient garbage collector, or optionally a just-in-time compiler
(see Section 2.3).

Because of these introduced aspects, the interpreter imple-
mentation itself is free from low-level details such as memory
management and can therefore focus purely on the language
semantics and on high-level optimization happening on lan-
guage level.

PyPy was originally started to be only a Python imple-
mentation (hence the name). However, the tools developed
in the process turned out to be generally applicable, so that

it is now used for the implementation of various dynamic
languages, such as Squeak/Smalltalk [6], JavaScript and now
Prolog.

2.3 JIT Compilers
One aspect that can be automatically introduced by the

PyPy translation toolchain into the final VM is a Just-in-
Time compiler. The JIT compiler will be generated by ana-
lyzing the RPython interpreter using partial evaluation tech-
niques [5]. This process is mostly automatic but requires a
few hints by the interpreter’s author to guide the process.
Those hints are a few lines of annotations added to the inter-
preter and are needed to identify the main interpreter loop
among other things.

Automatically generating a JIT compiler has many ad-
vantages: Writing a JIT compiler by hand is a tedious and
error-prone task, particularly for complex languages. Also,
many dynamic languages have similar needs from a JIT com-
piler (e.g., type specialization, unboxing of boxed objects,
dealing with changes to the program at runtime, ...), which
makes it worthwhile to implement a JIT compiler genera-
tor. PyPy’s JIT compiler generator is targeted at impera-
tive object-oriented dynamic languages, and a part of the
question posed by this paper is whether it can be success-
fully applied to a logic programming language at all. The
JIT generator is still experimental and in active develop-
ment, but already stable enough to give useful speedups for
PyPy’s Python interpreter.

The JIT that this process generates is a tracing JIT. It
focuses on generating good machine code for hot loops. The
detection and code generation for loops is performed by ob-
serving the interpreter executing the program [12, 11].

3. STRUCTURE OF THE INTERPRETER
The goal in implementing our Prolog interpreter in RPython

was to have a simple, high-level object-oriented implementa-
tion of Prolog. The semantics of Prolog should be mirrored
closely by the structure of the interpreter. We wanted to in-
corporate high-level optimizations into the interpreter, but
not be concerned about low-level details, which are left to
the PyPy translation tools to deal with.

The resulting interpreter fulfills many of these goals. It
has a straight-forward data model and uses continuation ob-
jects for the interpretation core (Section 3.1). So far it does
not contain many optimizations, e.g., there is no indexing
implemented yet.

The interpreter is about 5000 lines of RPython code, of
which 1000 lines are implementing builtins and 1700 are
tests. It can be translated to C using PyPy’s translation
toolchain and a JIT can be automatically generated for it
(see Section 4). When translating to C without a JIT,
the translation toolchain generates about 200,000 lines of C
code, the compiled binary is 700 KB large. When also gen-
erating a JIT, about 600,000 lines of C code are generated
(much of it support code for the generated JIT) resulting in
a binary of 2.0 MB.

To represent Prolog terms the interpreter uses a straight-
forward object-oriented design of the Prolog concepts. Pro-
log objects are modelled by instances of subclasses of the
PrologObject base class. Simple non-variable terms are
represented by their own class, such as Atom, Number and
Float (which are just boxes around a string, an integer and
a floating point number respectively). Logic variables are

Cons arg 1 arg 2

Var binding Atom functor

Atom functor

’a’

’[]’

Figure 1: List representation using a specialized
class for cons cells

represented by instances of a class Var. Unification is imple-
mented in an object-oriented style: all PrologObjects have
a unify method, which takes a second object as the argu-
ment. Whenever this process binds a variable it needs to be
trailed, to make backtracking possible.

3.1 Continuation-Based Interpretation
The actual interpreter is based on continuations. All the

state of the interpreter is encapsulated in two (possibly nested)
continuation objects, a success continuation and a failure
continuation. All continuations are instances of one of the
subclasses of a Continuation class.

The success continuation contains the still to be executed
“rest of the program”, the failure continuation contains the
code that needs to be executed if backtracking needs to hap-
pen. Calling a continuation typically consumes it, and po-
tentially replaces the current continuations by new ones. In-
terpretation proceeds by calling the current success continu-
ation until the computation is finished. If calling a continu-
ation fails, the current failure continuation is called instead.

Whenever a non-deterministic choice is reached, the inter-
preter creates a new failure continuation that backtracks to
the previous state and then continues with the other option.

The overhead of constantly creating these continuation
objects is kept small by the good GC support that the PyPy
toolchain gives us. Since most of the continuations are very
short-lived they are collected extremely efficiently by the
generational GC.

4. AUTOMATIC JIT GENERATION APPLIED
TO PROLOG

In this section we will describe how the JIT generator of
PyPy is applied to the Prolog interpreter. The central task
in doing so is correctly placing hints in the source code of the
interpreter [5]. The most important hints which are needed
for the JIT generator are:

• A hint to indicate the interpreter’s main loop to the
JIT generator.

• A hint to annotate those variables of the interpreter
which represent the position in the program that is
currently being interpreted. In a typical bytecode-
based imperative-language interpreter this is the pro-
gram counter. Since our interpreter is not bytecode-
based, we chose to mark the currently executed Prolog
rule.

iterate(0).

iterate(X) :- X > 0, Y is X - 1, iterate(Y).

Figure 2: A simple arithmetic iteration

• A hint to indicate the code of the interpreter that is
responsible for closing a loop. Again, in an impera-
tive language this hint is usually placed in the imple-
mentation of the bytecode which performs “backward
jumps”. This one is the hardest in Prolog, since there
is no explicit loop construct, only tail calls. Therefore
any call to a Prolog predicate has to be considered as
the possible start of a loop.

The JIT considers Prolog code to contain a loop when
the same rule of a predicate is applied repeatedly (poten-
tially with other rule applications in between). The most
straightforward sort of loop is a loop with tail calls, like a
list-append where the first argument is instantiated, or an
arithmetic loop.

4.1 Optimizations by the JIT
After the generated tracing JIT identified and traced a

loop in the executed Prolog code, it performs a number of
optimizations on the traces before they are turned into ma-
chine code code.

The two most important optimizations that the JIT per-
forms on the recorded traces are:

• Constant-folding reads out of immutable and known
objects.

• Completely removing object allocations that have a
limited life-time (escape analysis [13]).

This process can often remove all overhead of using con-
tinuations in the interpreter. If a continuation object is cre-
ated, it will often just be activated quickly afterwards and
then not be used anymore. In this case the continuation ob-
ject will be fully removed by the optimizer. Only in the case
when a choice point is created or the continuation actually
grows, can the allocation not be removed.

As an example of what the optimizations can achieve, let’s
look at what happens when the Prolog interpreter executes
a simple arithmetic iteration (see Figure 2 for the code).
At first, the interpreter will normally run the iterate loop,
keeping count of which predicates are executed often. After
a few iterations, it will identify the iterate predicate as a
likely candidate, so it enters tracing mode, keeping a trace
of all the execution steps that the interpreter performs. The
generated trace (which is quite detailed and thus rather long,
about 200 operations) will then be optimized as described
above.

Most of the operations in the trace are removed by the
optimization step. The resulting trace can be seen in Fig-
ure 3. This trace will then be turned into machine code by
an architecture-specific assembler backend and can then be
executed.

In this simple example the optimizer of the JIT was able
to remove all the allocations in the trace, since the continua-
tions that are created are immediately activated and do not
escape anywhere. In addition, even the Number object that
is used to box the integer value of the loop variable is re-
moved, since each of these objects survives for one iteration

Loop: [scont, i1, fcont, trail]

Check whether the base case applies(X)

i2 = int_eq(i1, 0)

guard_false(i2)

X > 0

i3 = int_gt(i1, 0)

guard_true(i3)

X0 is X - 1

i4 = int_sub(i1, 1)

recursive call to iterate(Y)

Check whether assert or retract was

used on the iterate/1 function:

p2 = read_field(<address iterate/1>, ’first_rule’)

guard_value(p2, <address 1st rule of iterate/1>)

jump(scont, i4, fcont, trail)

Figure 3: The intermediate code for the generated
machine code code of the iterate/1 function

of the loop only. Thus the generated machine code code can
keep the loop index in a machine integer, which can just be
kept in a CPU register. All the int_* operations are just
simple machine instructions.

The jump instruction at the end of the trace jumps to
the beginning again. Thus the trace by itself is an infinite
loop. It can only be left via one of the guard instructions.
Those guards check that the assumptions of the trace are not
violated. If the machine code is executed and the iteration
count reaches zero, the first guard will fail and execution
will fall back to using the interpreter again.

4.2 Evaluation
To evaluate the performance of our Prolog system we ran

a number of classical Prolog benchmarks. For space reasons
we cannot present the results here. To summarize the re-
sults: On micro-benchmarks such as arithmetic iterations
we are around 5 times faster than Sicstus Prolog. On small
to medium Prolog programs our JIT is on average (geomet-
ric mean) 6 times slower than Sicstus Prolog. Given that
tuProlog, a Prolog in Java, is on average 400 times slower
than Sicstus we are content with these first results.

5. RELATED WORK
It has been the dream of partial evaluation [15] to com-

pile programs by specialising interpreters. Unfortunately,
up to now “widely used partial evaluators are nowhere to
be seen” [2], even though there have been some successful
applications, such as [1, 16, 4]. To our knowledge, all of
these applications targeted very domain-specific languages,
whereas our work tries to use partial evaluation techniques
on an interpreter for a general purpose language.

There have been a number of attempts at writing high-
level object-oriented Prolog interpreters. tuProlog is a Pro-
log running on top of a Java virtual machine which was writ-
ten with good object-oriented design in mind [9]. It uses a
state machine to execute Prolog programs [17], whose states

can be related to the kinds of continuations of our inter-
preter.

6. CONCLUSIONS
In this paper we presented a simple Prolog interpreter

written in RPython, which can be compiled into a C-level
VM with the PyPy translation toolchain, optionally also
generating a tracing JIT compiler in the process. The re-
sulting VM is reasonably efficient and can be very fast in
cases where the generated JIT works well. Our approach
represents a success story for partial evaluation on a large
language implementation. To the best of our knowledge, it
is also the first Prolog implementation that defers all compi-
lation to runtime. We argue that Prolog can greatly benefit
from JIT compilation techniques, given its dynamic nature.

At the moment there are also a number of disadvantages to
our approach. The memory usage of the resulting interpreter
can be very bad, due to the overhead of using many objects
and the lack of low-level control. In addition, the way the
generated JIT works is not always transparent, sometimes
making it hard to know why certain Prolog code is compiled
efficiently to machine code and other code is not. Sometimes
the JIT compiler itself can take too much time to be really
profitable.

We plan to investigate in much more detail why the JIT
is sometimes not giving much speedup over the interpreter;
this might make it necessary to improve the JIT generator of
the PyPy project itself. In addition we want to improve the
interpreter itself by adding more Prolog-level optimizations
such as indexing. We should also find ways to save memory,
e.g., by forgoing some of the abstractions in the interpreter.

7. REFERENCES
[1] L. Augustsson. Partial evaluation in aircraft crew

planning. In PEPM, pages 127–136, 1997.

[2] L. Augustsson. O, partial evaluator, where art thou?
In J. P. Gallagher and J. Voigtländer, editors, PEPM,
pages 1–2. ACM, 2010.

[3] J. Aycock. A brief history of just-in-time. ACM
Comput. Surv., 35(2):97–113, 2003.

[4] S. Barker, M. Leuschel, and M. Varea. Efficient and
flexible access control via logic program specialisation.
In Proceedings PEPM’04, pages 190–199. ACM Press,
2004.

[5] C. F. Bolz, A. Cuni, M. Fija lkowski, and A. Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler.
In Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems,
pages 18–25, Genova, Italy, 2009. ACM.

[6] C. F. Bolz and A. Rigo. How to not write a virtual
machine. In Proceedings of the 3rd Workshop on
Dynamic Languages and Applications (DYLA 2007),
2007.

[7] A. Colmerauer and P. Roussel. The birth of prolog. In
History of programming languages—II, pages 331–367.
ACM, 1996.

[8] J. J. Cook. P#: a concurrent prolog for the .NET
framework. Softw. Pract. Exper., 34(9):815–845, 2004.

[9] E. Denti, A. Omicini, and A. Ricci. tuProlog: a
Light-Weight prolog for internet applications and

infrastructures. In Practical Aspects of Declarative
Languages, pages 184–198. 2001.

[10] L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the smalltalk-80 system. In
Proceedings of the 11th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages,
pages 297–302, Salt Lake City, Utah, United States,
1984. ACM.

[11] A. Gal and M. Franz. Incremental dynamic code
generation with trace trees. Technical Report
ICS-TR-06-16, Donald Bren School of Information and
Computer Science, University of California, Irvine,
Nov. 2006.

[12] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an
effective JIT compiler for resource-constrained devices.
In Proceedings of the 2nd international conference on
Virtual execution environments, pages 144–153,
Ottawa, Ontario, Canada, 2006. ACM.

[13] B. Goldberg and Y. G. Park. Higher order escape
analysis: optimizing stack allocation in functional
program implementations. In Proceedings of the third
European symposium on programming on ESOP ’90,
pages 152–160, Copenhagen, Denmark, 1990.
Springer-Verlag New York, Inc.

[14] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Object-Oriented languages with
polymorphic inline caches. In Proceedings of the
European Conference on Object-Oriented
Programming, pages 21–38. Springer-Verlag, 1991.

[15] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice Hall, 1993.

[16] M. Leuschel and D. De Schreye. Creating specialised
integrity checks through partial evaluation of
meta-interpreters. The Journal of Logic Programming,
36(2):149–193, August 1998.

[17] G. Piancastelli, A. Benini, A. Omicini, and A. Ricci.
The architecture and design of a malleable
object-oriented prolog engine. In Proceedings of the
2008 ACM symposium on Applied computing, pages
191–197, Fortaleza, Ceara, Brazil, 2008. ACM.

[18] A. Rigo and S. Pedroni. PyPy’s approach to virtual
machine construction. In Companion to the 21st ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 944–953,
Portland, Oregon, USA, 2006. ACM.

[19] P. van Roy. 1983-1993: The wonder years of sequential
prolog implementation. Journal of Logic
Programming, 19:385–441, 1994.

[20] D. H. D. Warren. An abstract Prolog instruction set.
Technical Report 309, SRI International, 1983.

