
Scripting Modeling Languages

Michaël Hoste
Service de Génie Logiciel

Université de Mons - UMONS
Place du Parc 20, 7000 Mons, Belgique

michael.hoste@umons.ac.be

Tom Mens
Service de Génie Logiciel

Université de Mons - UMONS
Place du Parc 20, 7000 Mons, Belgique

tom.mens@umons.ac.be

ABSTRACT
Domain-Independent Models are mainly used for documen-
tation purposes and are most of the time too complex to be
directly executed, even by code generation. Domain-Specific
Models can sometimes be executed, but their scope is too
specific to be reused for other purposes. We propose to
develop a mechanism that allows the creation of modeling
languages that will be directly executed into software ap-
plications. We inspire ourselves from dynamic languages,
especially scripting languages, and adapt their approach to
models in order to be able to execute models directly, not
for an entire application, but for a specific and well-defined
part of it. The goal of scripting languages is to raise the
level of abstraction of the host language and to delegate
some work to an external language. With the help of two
concrete examples, we claim that scripting modeling lan-
guages can meet this objective better than textual scripting
languages and that an application can evolve only by using
script models.

Keywords
visual scripting, model-driven software development, script-
ing language, modeling language, software evolution

1. INTRODUCTION
One of the main advantages of using dynamic languages

is that they offer a higher degree of freedom than static
languages. The developer does not need to declare variables,
to allocate memory, or even to compile. The data types
are also easier to manipulate. These features make dynamic
languages good candidates for a junior developer to program
[9].

Dynamic languages are also very appreciated as scripting
languages. A scripting language is a mechanism that allows
to control part of an application developed in another lan-
guage. More and more applications use external scripting
languages to extend their features (e.g., Adobe Photoshop,
Blender, MySQL, VLC Media Player, Gimp, World of War-
craft and most recent games). Scripting languages can be
helpful for internal development but, most of the time, their
use is dedicated to external unexperienced developers want-
ing to make small customizations to their software. After
reading a few tutorials, users with a low level of program-
ming skills can create a new filter for Gimp [10], a new screen
helper for World of Warcraft, or even a new campaign for
a game if the game’s architecture allows it [6]. All low-
level pieces of code are hidden behind an API (Application

Programming Interface) created in the main language and
accessible by the scripting language (cf. figure 1).

Knowing that dynamic languages, and more particularly
scripting languages, seem perfect for beginners, the purpose
of this article is to raise the level of abstraction for even
more unexperienced developers. The idea is to create script-
ing modeling languages that are easier to learn and easier to
modify, yet with the same flexibility as dynamic languages
[5]. Scripting modeling languages are intended to be mapped
to scripting languages in real-time. This could open new per-
spectives and indirectly spread the use of dynamic languages
to a sphere of less-experienced developers. Furthermore,
for some domain-specific applications, we demonstrate that
the application’s evolution can be managed only by model
scripting, without any change to the main language.

Nowadays software engineers use more and more models
as primary artifacts in the development of software systems.
This software development methodology, known as model-
driven software engineering (MDE) [12], addresses the in-
trinsic complexity of software-intensive systems by raising
the level of abstraction, and by hiding the accidental com-
plexity of the underlying technology as much as possible [2].

Our approach could be interesting in the scope of MDE.
UML is one of the most popular domain-independent soft-
ware modeling languages [4]. UML 2.x provides 13 diagram
types that correspond to as many different views on the soft-
ware being modeled. As these views overlap on many points,
it is very difficult to prevent the occurrence of inconsisten-
cies between the views and to maintain consistency between
the different views during evolution [13, 15]. Because of that,
only a few views are usually created to design an application
and UML is mostly used for documentation purposes.

The goal of our paper is to include models in applications
in a more integrated way. We aim to integrate executable
models as small parts of the software, as opposed to execut-
ing a model representing the entire software. In the tradi-
tional approach, a model represents the global application
architecture and design at a high level, and the programmer
needs to refine the model with a textual programming lan-
guage. In our approach, the model does not represent the
whole design of the application but only the behavior of one
of its subsets. The main idea is to delegate specific tasks to
an external model the way we do with scripting languages.

These days, more and more software applications use ex-
ternal scripting languages to extend their features. Section 2
briefly summarizes the concept and the advantages of using
these scripting languages. Section 3 describes our vision of a
scripting modeling language and its technical aspects. Sec-



tion 4 highlights, with the help of two examples, the main
advantages of using a model that controls the flow of an
application.

2. SCRIPTING LANGUAGES
Scripting languages are often embedded in applications to

extend their features. They are usually adapted for large
applications where there is a need for modularity and where
it could be beneficial to delegate some tasks to an external
process. Scripting languages have many advantages: (1) the
scope of a script is limited to a subset of attributes, methods
and classes through the use of a well-defined API; (2) a script
can be modified and executed without any recompilation of
the main program; (3) scripting languages provide, most of
the time, a better productivity [9]; (4) scripting languages
usually have the same capabilities as independent languages.

These advantages allow senior programmers to delegate
some of the tasks to junior programmers that do not need
to know the entire application architecture and code in or-
der to be productive. Due to the limited scope of the script,
there is a lower risk of side-effects and the propagation of er-
rors is restricted to the script. As such, unexperienced users
or programmers have the possibility to modify the applica-
tion simultaneously with limited risk of breaking it. Fur-
thermore, there is no need to install a complete tool-chain
in order to compile the application. One can make some
changes in the script and see the impact on the application
behavior in real-time.

Scripting languages are an easy way to involve the cus-
tomer in the software development process. This allows
better feedback and faster adaptation to changing require-
ments. Smaller product life-cycles enable a more effective
implementation that respond better to the user’s require-
ments [1].

There are many success stories involving scripting lan-
guages in both open-source and commercial communities.
One out of many open-source examples is Blender, a power-
ful 3D modeling and animation application written in C/C++.
Blender uses Python as scripting language to embed some
behavior and provides an API with the available methods.
By using Python scripting, the end-user can call Blender
routines and extend the features in a wide range of ways
without any need to recompile. There are now hundreds of
scripts written for Blender that can be used by the commu-
nity1.

Some well-known commercial proprietary software is also
using scripts. It is an easy way to allow end-users to extend
the software with new features even when it is closed-source.
With an active software community, it enhances the value of
the software at virtually no cost. One very popular example
of this is World of Warcraft, which uses a scripting language
(Lua) to allow the player to modify and evolve the user
interface in many ways. It is then possible to draw helpers
on the screen, add a new world map, and log some 3D world
information that appears on the screen.

3. SCRIPTING MODELING LANGUAGES
Some studies have shown that using visual models is ad-

vantageous for a better understanding and a faster modifi-
cation of software [16, 7]. However, it is unclear how hard it

1http://wiki.blender.org/index.php/Extensions:
2.4/Py/Scripts

Figure 1: The technical solution we use to execute
scripting modeling languages

is to create a software design model that could define every
aspect of a software application.

We propose to merge the advantages of both modeling and
scripting languages. We have seen that scripting languages
improve the software modularity. We claim that it is useful
and possible to keep the modularity properties of scripting
languages and raise the level of abstraction to the level of
scripting modeling languages. Instead of including a textual
scripting programming language in an application, we want
to use a visual scripting modeling language with the same
role.

The scripts will be more understandable, the develop-
ment will be faster, and, consequently, its cost will be re-
duced. More importantly, part of the development can be
outsourced to third-parties, non-professional programmers
or even end-users, and all of these script models can be
shared by the community. This kind of business model is
a win-win situation for both the software provider and its
clients.

For MDE, most of the time the software architect creates
models and then the programmer implements them. That
involves more work. Some solutions exist to automatically
generate code from models or even to run models, but they
still seem difficult to implement and still lack the proper
tools [11]. In our solution, the model is considered as a
primary artifact of the software and is directly executed.

Technical solution
We want to have the possibility to use and combine different
scripting modeling languages. They will be transformed on-
the-fly to a textual scripting language (like Lua). There will
be domain-independent modeling languages, like flowcharts,
and domain-specific modeling languages. Core software de-
signers will have the possibility to create new scripting mod-
eling languages adapted to their domain and needs.

We illustrate the technical aspects of our scripting mod-
eling process in figure 1. The left part of figure 1 represents
the script model that conforms to the scripting modeling
language. This modeling language can take various forms
like flowcharts, state diagrams, or domain-specific models.
Each time the script model evolves, the new related script,
which conforms to a scripting language (Lua, Python, ...), is
generated. This script is used by the main program through
the dedicated API. This API is created using the main pro-
gramming language.

Like a textual script, a script model only has access to
methods, attributes, or even classes, that are specified by



Figure 2: The abstract syntax is used to make the
bridge between scripting modeling languages and
scripting programming languages

the API. For example, if we need a script model to sort a
table, the API will be containing attributes like the table

itself and methods like length(table) and swap(table, i,

j). If the API is correctly defined, it will not be able to call
other functions that are not useful for sorting.

In practice, we operate in two steps. The first step is the
generation of a textual script from a script model. It has to
be flexible enough to handle a wide range of modeling lan-
guages (including new ones that are domain-specific) and
any scripting language. To avoid having to create a map-
ping from all modeling languages to all scripting languages,
we use an abstract syntax to make the bridge (cf. figure 2).
This abstract syntax is closer to the textual scripts than the
scripting modeling language. To transform a script model
into the abstract syntax and to transform the abstract syn-
tax into a script, we use the ASF+SDF Meta Environment
[14]. ASF+SDF Meta Environment is a syntax/semantic
analysis and transformation tool that is able to transform
abstract syntax trees (ASTs) to other ASTs.

The second step consists of creating a library adapted to
a main programming language. This library must allow de-
velopers to create dedicated APIs for script models. This
library is also responsible to load script models and to trans-
form them into textual scripts in a transparent way. The
library needs to be created for each main programming lan-
guage we may want to use. It will be built on the existing
libraries for scripting languages such as LuaJava [3], which
can load a Lua script in Java.

4. EXAMPLES
We illustrate the advantage of our approach with two con-

crete examples. They concern a mobile museum guide appli-
cation [8]. A mobile museum guide is a device that is given
to visitors at the entrance of a museum and that gives them
information about the artworks they are passing by during
their visit.

Museums often trade or move artworks depending on the
current collections. In order to reduce the maintenance of
expert programmers when artworks are changed and to im-
prove the modularity of such a guide, an appropriate so-
lution is to use scripts. This way, with only some docu-
mentation, an unexperienced programmer is able to change
information (location, description, images, etc.) about all
artworks without any need to hard-code or even compile the
main code. The modifications will be directly taken into
account. A second advantage of scripts in this context is
that the museum manager can use them to create a visit
scheduling adapted to the visitors’ preferences.

We present why model scripting is better than textual

Figure 3: The museum plan with a superimposed
visit schedule using our scripting modeling language

Figure 4: The generated Lua code for the script
model of figure 3

scripting for this purpose using the two examples of visit
scheduling and interactive artwork presentations. The first
example will use a domain-specific modeling language and
the second one a domain-independent modeling language
(flowchart).

For better readability and space considerations, the two
examples developed in this section are very simple but they
can get more complex depending on the user’s needs.

Visit scheduling
According to the visitors’ preferences, the museum manager
needs to define more than one visit schedule using the mo-
bile museum guide in the museum. Some visitors are more
interested in only one type of art, some others want to see
the most important artworks in a short period of time, and
others yet want to take the whole day to see everything. To
avoid the need to hard-code each visit when the museum is
restructured, a scripting modeling language can be used, just
like the one shown in figure 3. The scripting model incor-
porates the museum plan and allows the manager to modify
the schedule of the visit by adding or removing arrows.

Once the script model of our schedule is finished, it is
loaded in the main language by our library, and the corre-
sponding textual script is generated and executed on-the-fly.
Using Lua as scripting language, the generated code is dis-
played on figure 4. Note that the code is ugly but this does
not matter since the code is not intended to be seen and
modified by a developer, it is generated and interpreted au-
tomatically.

Interactive artwork presentation
In the mobile museum guide, each artwork needs a presen-
tation that may contain text, image, video, and sound, that
must be defined. All of these pieces of information cannot
be on the screen at the same time so the museum manager
must choose a display order and some transitions. Besides



Figure 5: The (short) presentation of an artwork
using our scripting modeling language

Figure 6: The generated code for the script model
of figure 5

that, when a visitor stands in front of a medieval artwork, a
quick introduction about the Middle Ages must be triggered.
However, this introduction must be triggered just once. In
order to avoid needing to hard-code this kind of behavior
and to allow the manager to change it in an simple way, a
flowchart like the one in figure 5 will be used.

Once this flowchart is finished, it is loaded in the main
language by our library each time a visitor is close to an
artwork. The textual script is generated and executed on-
the-fly, and the artwork presentation is given to the visitor.
Using Lua as scripting language, the generated code is dis-
played in figure 6.

5. CONCLUSION
We have shown in this article that it is possible to raise

the level of abstraction of textual scripting languages to ob-
tain scripting modeling languages. The main advantage of
this is that less-experienced developers can easily change an
application’s behavior or add a behavior without installing
a complete tool-chain or even recompiling the application.

Our script models can be directly integrated and executed
as part of an application. Depending on the needs of the
application, scripting modeling languages can be domain-
specific or domain-independent.

Through two concrete examples concerning a mobile mu-
seum guide, we have seen that, in the context of concrete
problems, raising the level of abstraction can improve the
modularity of the application. This modularity improve-
ment enables museum managers or even historians to mod-
ify the application’s behavior themselves just by modifying
the script models and without bringing any change to the
core of the application. This flexibility and the use of script
models will make software evolution an easier and cheaper
task.

Acknowledgments
This research is funded by the Ministère de la Communauté
Française - Direction générale de l’Enseignement non obli-
gatoire et de la Recherche scientifique, Belgique (Action de
Recherche Concertée AUWB-08/12-UMH19)

6. REFERENCES
[1] K. Beck and C. Andres. Extreme Programming

Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional, 2004.

[2] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. 20th anniversary edition, 1995.

[3] C. Cassino, R. Ierusalimschy, and N. Rodriguez.
LuaJava-a scripting tool for Java. Arxiv preprint
cs/9903018, 1999.

[4] M. Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[5] G. Kappel, J. Vitek, O. Nierstrasz, S. Gibbs,
B. Junod, M. Stadelmann, and D. Tsichritzis. An
object-based visual scripting environment.
Object-Oriented Development, ed. D. Tsichritzis,
Université de Genève, 1989.

[6] G. Lyrio and R. Seixas. Using Lua as Script Language
in Games Coded in Java. In Proceedings of The North
American Simulation and AI in Games Conference -
GAMEON-NA, EUROSIS, Montreal, Canada, 2008.

[7] R. Navarro-Prieto. Are visual programming languages
better? The role of imagery in program
comprehension. International Journal of Human
Computer Studies, 54(6):799–830, 2001.

[8] R. Oppermann and M. Specht. Adaptive support for a
mobile museum guide. In Proceedings of the
Conference on Interactive Applications of Mobile
Computing. Citeseer, 1998.

[9] J. Ousterhout. Scripting: Higher-level programming
for the 21st century. IEEE computer, 31(3):23–30,
1998.

[10] A. Peck. Beginning GIMP, chapter Plug-ins and
Scripting, pages 435–480. Springer, 2009.

[11] B. Rumpe. Executable Modeling with UML. A vision
or a Nightmare. Issues & Trends of Information
Technology Management in Contemporary
Associations, Seattle. Idea Group Publishing, Hershey,
London, pages 697–701, 2002.

[12] D. C. Schmidt. Guest editor’s introduction:
Model-driven engineering. IEEE Computer, pages 25 –
31, February 2006.

[13] G. Spanoudakis and A. Zisman. Inconsistency
management in software engineering: Survey and open
research issues. In Handbook of Software Engineering
and Knowledge Engineering, pages 329–380. World
scientific, 2001.

[14] M. van den Brand, A. van Deursen, J. Heering,
H. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. Olivier, J. Scheerder, et al. The
ASF+SDF Meta-environment: A Component-Based
Language Development Environment. In Compiler
Construction, pages 365–370. Springer.

[15] R. Van Der Straeten, T. Mens, J. Simmonds, and



V. Jonckers. Using description logic to maintain
consistency between UML models. In UML 2003, page
326. Springer Verlag, 2003.

[16] K. Whitley. Visual programming languages and the
empirical evidence for and against. Journal of Visual
Languages and Computing, 8(1):109–142, 1997.


