
Agile Code Profiling Visualization

Alexandre Bergel

DCC, University of Chile, Santiago, Chile
http://bergel.eu

Abstract. This demonstration presents two code profiler tools. The first
one is a concrete nominal type extractor which operates on unit tests.
The second tool is a time profiler that offers a number of synthetic and
expressive source code visualizations to easily identify execution bottle-
necks. These two tools have been successfully employed to identify bugs,
anomalies and bottlenecks in the Mondrian visualization engine.

These two tools are instantiations of Spy, a dedicated code profiling
framework. Spy is briefly described and illustrated.

All this work has been implemented in the Pharo Smalltalk programming
language and is available under the MIT license.

Even though computing resources are abundant, execution optimization and
analysis through code profiling remains an important software development ac-
tivity. Program profilers are crucial tools to identify execution bottlenecks and
uncover interaction. Today, it is inconceivable to ship a programming environ-
ment without a code profiler included or provided by a third party.

When we retrospectively look at the history of code profiler tools, we see that
tool usability and profiling overhead reduction have steadily improved, but that
the set of offered abstractions has remained constant. For instance, gprof, which
appeared in 1982, offers a number of textual output focussed on “how much
time was spent executing directly in each function” and call graphs1. JProfiler
essentially proposes the same output, using a graphical rendering instead of a
textual one2. Most of the research conducted in the field of code profiling focus
on reducing the overhead triggered by the code instrumentation and observation.
On the other hand, the abstractions used to profile object-oriented applications
are very close to the ones for procedural applications.

This demo proposal summarizes the result of two complementary research
efforts. Implementation prototypes are first described from a user point of view.
A succinct presentation of the Spy framework concludes this proposal.

Extracting types from unit tests. We propose a mechanism for extracting type
information from the execution of unit tests. For a given program written in a
dynamically typed language, we can deduce the type information from executing

1 http://sourceware.org/binutils/docs/gprof/Output.html#Output
2 http://www.ej-technologies.com/products/jprofiler/screenshots.html

2 A. Bergel

the associated unit tests. The idea is summarized as follows: (i) we instrument
an application to record runtime information; (ii) we run the unit tests asso-
ciated to the application; (iii) we deduce the type information from what has
been collected. Method signatures of the base program are then determined by
the values provided to and returned by method calls while the tests are being
executed.

As a concrete use case, we apply the extracted type information to find soft-
ware faults. Type information combined with a test coverage helps identifying
methods that were not invoked with all possible parameter types. By covering
these missing cases, we identified and fixed a number of bugs and anomalies in
Mondrian3, a data visualization software.

Time profiling blueprints. Time profiling blueprints are graphical representations
meant to help programmers (i) assess the time distribution and (ii) identify
bottlenecks and give hints on how to remove them for a given program execution.
The essence of profiling blueprints is to enable a better comparison of elements
constituting the program structure and behavior. To render information, these
blueprints use a graph metaphor, composed of nodes and edges.

The size of a node hints at its importance in the execution. In the case that
nodes represent methods, a large node may say that the program execution
spends “a lot of time” in this method. The expression “a lot of time” is then
quantified by visually comparing the height and/or the width of the node against
other nodes.

Color is used to either transmit a boolean property (e.g., a gray node repre-
sents a method that always returns the same object value) or a metric (e.g., a
color gradient is mapped to the number of times a method has been invoked).

We propose two blueprints that help identify opportunities for code opti-
mization. They provide hints to programmers to refactor their program along
the following two principles: (i) make often-used methods faster and (ii) call slow
methods less often. The metrics we adopted in this work help finding methods
that are either unlikely to perform a side effect or return always the same result,
good candidates for simple caching optimizations.

Figure 1 is an example of Structural Blueprint, one of the two visualizations
we propose. Enclosing nodes are classes. A class and its superclass are linked each
other with a line. A tree layout order the nodes by locating a superclass above
its subclasses. Each class contains methods. Methods are rendered using three
metrics: number of executions (width), total execution time (height), number of
different object receivers. The figure shows that the method applyLayout, defined
in the class MOGraphElement plays a major role in the total execution time for
the code being profiled.

Our work on time profiling is described in a larger fashion in TOOLS’10
proceedings [BRB10]. TOOLS’10 is an event collocated with DYLA’10.

3 http://moose.unibe.ch/tools/mondrian

4th Workshop on Dynamic Languages and Applications 3

legend for methods

(color)
#different
receiver

executions

execution
time

Fig. 1. Example of a structural time profiling blueprint

The Spy Framework. The tools presented above requires a support for runtime
introspection. Unfortunately, not many libraries are available in the Smalltalk
World. AspectS [Hir03] and Reflectivity [Den08] are two popular frameworks,
however they are not available on Pharo, the Smalltalk dialect we adopted as
the development platform.

Spy is a framework freely available4 that offers the ability of model cross-
cutting concerns, in a fashion similar to what AspectJ 5 provide.

Spy is a framework designed to profile applications6. Profiling output is struc-
tured along the static structure of the analyzed program composed of packages,
classes and methods. The core of Spy is composed of four classes, PackageSpy,
ClassSpy, MethodSpy. The 3 first classes contains profiling information for pack-
ages, classes and methods. Profiling information may be stored and used later
on for comparison.

We quality Spy as agile since it enables fast prototyping of profilers. By defin-
ing as much as 3 methods and 3 classes, profiling information may be visualized
and inspected.

4 http://www.squeaksource.com/Spy.html
5 http://eclipse.org/aspectj/
6 It is freely available on http://www.squeaksource.com/Spy.html

4 A. Bergel

All the ideas presented in this demonstration were validated using the Pharo
programming language7, a Smalltalk like dynamically typed programming lan-
guage. Our profiling tools are not particularly tied to the dynamicity of the
language. Realizing this work in such a language however facilitates building
and scripting our profilers while the profiled application is being executed.

References

[BRB10] Alexandre Bergel, Romain Robbes, and Walter Binder. Visualizing dynamic
metrics with profiling blueprints. In Proceedings of the 48th International Con-
ference on Objects, Models, Components, Patterns (TOOLS EUROPE’10).
LNCS Springer Verlag, July 2010. to appear.

[Den08] Marcus Denker. Sub-method Structural and Behavioral Reflection. PhD thesis,
University of Bern, May 2008.

[Hir03] Robert Hirschfeld. AspectS — aspect-oriented programming with squeak.
In Proceedings NODe 2002, volume 2591 of LNCS, pages 216–232. Springer-
Verlag, 2003.

7 http://www.pharo-project.org

