
1

Programming with
Seaside

Alexandre Bergel
Alexandre.Bergel@cs.tcd.ie

LERO & DSG
Trinity College Dublin, Ireland

Part I:
Seaside in a Nutshell

Alexandre Bergel

Outline

1. What is Seaside?
2. Starting Seaside
3. Create new Seaside Component
4. Creating GUI
5. Using CSS
6. Interaction Between Components

3

Alexandre Bergel

Introduction to Seaside

• Application server Framework
• Useful for generating dynamic web pages

• Web server application for Squeak (used in this
presentation) and VisualWorks.

• Works on the top of a webserver (Comanche,
Swazoo).

• Provides high-level API to handle navigation between
pages (links) and GUI.

4

Alexandre Bergel

Some of the Seaside Features

• Sessions as continuous piece of code
• XHTML/CSS building
• Callback based event-model
• Composition and Reuse
• Development tools
• Interactive debugging
• Multiple control flow

5

Alexandre Bergel

Starting Seaside

• Start the server with:
WAKom startOn: 9090

• Go to to access the counter component:
http://localhost:9090/seaside/counter

6

Alexandre Bergel

Component Responsibilities

• It is a subclass of WAComponent
• It contains a State modeled as instance variables
• The flow is defined by methods
• Rendering (high-level API that generate XHTML)
• Style (CSS)

7

Alexandre Bergel

Counter Example

8

• WACounter inherits from WAComponent.
WACounter

initialize

increase

self session registerObjectForBacktracking: self.
count := 0

WAComponent

count

count := count + 1

count := count - 1 decrease

html heading: count.
html anchorWithAction: [self increase] text: '++'.
html space.
html anchorWithAction: [self decrease] text: '--'.

renderContentOn: html

self registerAsApplication: ‘counter’
WACounter class>>initialize

Alexandre Bergel

Creating new Component

• Designing a small application to memorize words in
a foreign language.

• Display a score to show the progress.
• 2 ways of using:

– Adding a new word in the database
– Entering a translation

9

Alexandre Bergel

Creating new Component

10

Alexandre Bergel

Component Definition

• Definition of the main class:
WAComponent subclass: #Learner
	instanceVariableNames: 'words germanWord englishWord
score'
	classVariableNames: ''
	poolDictionaries: ''
	category: 'WordLearning'

11

Alexandre Bergel

Variables Initialization

• List of entered words:
Learner>>words
	words ifNil: [words := OrderedCollection new].
	^ words

• Score (increased when an entered word is correct):
Learner>>score
	score ifNil: [score := 0].
	^ score

• Choose a word:
Learner>>chooseEntry
	 ^ self words atRandom

12

Alexandre Bergel

Helper Methods

• Could we ask for a word?
Learner>>readyToGuessWord
	^ self words notEmpty

• Increasing the score:
Learner>> increaseScore
	score := self score + 1

13

Alexandre Bergel

Managing the Back Button

• Need to keep the history of the objects, in case of
pressing the back button on the web browser
Learner>>initialize
	super initialize.
	self session registerObjectForBacktracking: self.

• A trace of the lifetime is kept. When the back button
is pressed, state previously recorded is restored.

14

Alexandre Bergel

Registration of the Application

• Application registration:
Learner class>>initialize
	self registerAsApplication: 'word'

15

Alexandre Bergel

Rendering (1/2)

• Learner>>renderContentOn: html
html heading: 'Improve your Language Skills'.
html form: [
 html text: 'English: '.
	html textInputWithCallback: [:w| englishWord := w].
	html text: ' German: '.
	html textInputWithCallback: [:w| germanWord := w].
	html submitButtonWithAction:
	 [self words add: (Array with: englishWord with: germanWord)]
	 text: 'Add Word'.
].
...

Alexandre Bergel

Rendering (2/2)

• ...
html horizontalRule.
self readyToChooseWord ifTrue: [
	html heading: 'Your score is: ', self score asString.
	html form: [|chosenWord|
	 chosenWord := self chooseEntry.
	 html text: (chosenWord first).
	 html textInputWithCallback:
 [:w| (w = chosenWord second) ifTrue:
 [self increaseScore]]]]
		

17

Alexandre Bergel

Creating GUI (1/2)

• Displaying simple text:
html text: ‘My Text’

• Using different size:
html heading: aBlockOrText level: level
html heading: aBlockOrString

• Link with action:
html anchorWithAction: aBlock text: aString

• TextField without any button:
html form: [... html textInputWithCallback: aBlock ...]

18

Alexandre Bergel

Creating GUI (2/2)

• Using a form:
html form: [
 html textInputWithCallback: aBlock.
 ...
 html submitButtonWithAction: aBlock text: aString]

• Look at the class WAHtmlRenderer and
WAAbstractHtmlBuilder

19

Alexandre Bergel

CSS: to give a better look

• Use divNamed: aString with: aBlockOrObject
	html divNamed: 'title' with: [
	 html text: 'Improve Language Skills'
].

• Or
	html divNamed: 'title' with: 'Improve Language Skills'

20

Alexandre Bergel

CSS: defining the style

• Define a method named style on the seaside
component:
WordLearningComponent>>style
 ^ ‘#title {
	background-color: lightblue;
	margin: 10px;
	text-align: center;
	color: blue;
	font-size: 18pt;
	margin-top: 400px}
body {
	background-image: url("http://www.iam.unibe.ch/~bergel/
catsEye_hst_full.jpg");
	background-repeat: no-repeat;
	background-position: top center;

color: blue;}’

Alexandre Bergel

CSS: more info

• Supported by many web browsers

• Where to get more information:
http://www.w3schools.com/css

• ZenGarden:
http://www.csszengarden.com/

22

Alexandre Bergel

call: / answer:

A>>m1
 x := self call:
 x printString

B

B>>m2
 self answer: 69

A>>m1
 x := self call:
 x printString
 -> 69

components in browsercode

A

A

AB

B

The framed B in the method m1 is a graphical object displayed as the window B
in the web browser. m2 is a method that is invoked in a callback i.e., when an
action on the component B is invoked such as a button pressed or a link clicked.

23

Alexandre Bergel

call: / answer:

• To transfer control to another component,
WAComponent provides the special method #call:.
This method takes a component as a parameter, and
will immediately begin that component's response
loop, displaying it to the user.

• If a called component provides an argument to
#answer:, that argument will be returned from
#call:. In other words, calling a component can yield
a result.

24

Alexandre Bergel

Example: Sushi Shop Online

search component

list component

batch component

cart view component

25

Alexandre Bergel

Logical Flow

Fill cart
Confirm

contents.
Checkout?

buy

no

Shipping
address

yes

Use shipping
as billing
address?

Payment
infos

Billing
address

no

yes

ok

ok

ok

Confirmation

26

Alexandre Bergel

XHTML generation

• XHTML code is generated programmatically:
Store>>renderContentOn: html
	html cssId: 'banner'.
	html table: [
		 html tableRowWith: [
		 	 html divNamed: 'title' with: self title.
		 	 html divNamed: 'subtitle' with: self subtitle.
]
].
	html divNamed: 'body' with: task

27

Alexandre Bergel

Control Flow

WAStoreTask>>go
	| shipping billing creditCard |
	cart := WAStoreCart new.
	self isolate:
	 [[self fillCart. self confirmContentsOfCart] whileFalse].
	self isolate:
	 [shipping := self getShippingAddress.
	 billing := (self useAsBillingAddress: shipping)
		 	 	 	 ifFalse: [self getBillingAddress]
		 	 	 	 ifTrue: [shipping].
		 creditCard := self getPaymentInfo.
		 self shipTo: shipping billTo: billing payWith:
creditCard].
	self displayConfirmation.

28

Alexandre Bergel

Control Flow

• To fill in the cart:
WAStore>>fillCart
	 self call: (WAStoreFillCart new cart: cart)

• To confirm contents of cart:
WAStoreTask>>confirmContentsOfCart
	 ^ self call:
		 ((WAStoreCartConfirmation new cart: cart)
		 	 addMessage: 'Please verify your order:')

• Payment:
WAStore>>getPaymentInfo
	^ self call:
	 ((WAStorePaymentEditor new
	 validateWith: [:p | p validate])
	addMessage: 'Please enter your payment information:')

29

Alexandre Bergel

Control Flow

• answer returns the component itself
WAStoreFillCart>>checkout
 self answer

30

Alexandre Bergel

Some Guidelines

• Tasks are used to embed the logical flow of an
application within the go method, whereas

• The rendering is in charge of components.
• Hence, the entry point of an application should be a

task’s go method

31

Alexandre Bergel

Seaside

• Used in industries
• More info on:

http://www.beta4.com/seaside2
• Seaside’s fathers: Avi Bryant and Julian Fitzell
• Mailing list:

http://lists.squeakfoundation.org/listinfo/seaside

32

Part II:
Developing Web-based

Applications

Alexandre Bergel

Outline

1. What is a Web-based Application?
2. Issues when Directly Dealing with HTML
3. Example: Sushi Shop Online
4. Seaside Approach
5. Manipulating Non-Linear Control Flow
6. Development Tools

34

Alexandre Bergel

What is a Web-based Application?

• A collection of functions that take HTTP
requests as input and produce HTTP responses
as output.

• Logical part centralized

35

Alexandre Bergel

Directly Manipulating HTML

• Stateless connection toward the server. State has to
be passed around for each connection.

• ASP, PHP

36

Alexandre Bergel

What is a Web-based Application?

...

37

User: Web browser

flight.html

GET
flight.html

<a href=
”address.html?cart=...”

address.html

GET
address.html?cart=...

<a href=
”payment.html?
cart=...&address=...”

Alexandre Bergel

Directly Manipulating HTML

• Applications are difficult to maintain:
– Adding, renaming, removing some state is difficult
– Flow execution scattered in several files
– Poor management of the bandwidth: state has to be

passed for each action!

38

Alexandre Bergel

Common Issues with Classical Framework

• Applications are often tedious to use:
– Do not use the back button!
– Do not duplicate the windows!
– “Press OK only once!!!”
– “Do you want to resend the form?”
– Cookies manipulations

39

Alexandre Bergel

Seaside Approach

• Each session has one unique ID kept over its life
time:
– Users (web browsers windows) are distinguished

• Each action has one ID unique over the session:
– In the lifetime of a session, an action is unique (”press OK

only once”)

40

Alexandre Bergel

Non-Linear Control Flow

• The control flow of an application can always be
modified by the user when pressing the back button
or by opening a new browser on the same url.

41

Alexandre Bergel

Backtracking State

• With seaside, an object can be backtracked using the
method:
WASession>>registerObjectForBacktracking: anObject

• After each response sent to the client, Seaside
snapshots the registered objects by creating a copy
and putting them into a cache.

• Pressing the back button on the browser restores
the state of the object which is in sync of the display.

42

Alexandre Bergel

Transaction

• In complex applications it is often the case that we
must ensure that the user is prevented from going
back over a sequence of pages to make
modifications.

• Controlling the control flow is implemented by the
method:
Component>>isolate: aBlock

• It treats the control flow defined in the block as a
transaction. It makes sure that the user can move
forward and backward within the transaction. Once
completed, the user cannot go back anymore.

43

Alexandre Bergel

Debugging with Seaside

• When debugged, an application does not need to be
restarted or manually recompiled

44

Alexandre Bergel

Debugging
1

3

2

a b

cd

Alexandre Bergel

Toolbar

Source View

Rendered View

System Browser

Inspector

Library Browser

Component

Name

(a) Toolbar

(b) Halo

46

Alexandre Bergel

Toolbar

• A toolbar is shown at the bottom of the web-
application during the development phase.

• It allows one to access some tools:
– New Session restart the application
– Configure opens a dialog letting the user configure some

settings
– Toggle Halos shows or hides the halos (explained later)
– Profile shows a detailed report on the computation time

used to render the page
– Memory Use display a detailed report on the memory

consumption
– XHTML start an external XML validator on this page

47

Alexandre Bergel

Halos

• When enabling the halos, every component gets
surronded by a thin grey line and a header giving the
class name of the component and a set of buttons to
run tools and to change the viewing mode.
– System Browser opens an editor on the current

component.
– Inspector opens a view on the current component.
– Library Browser opens an editor that lets a UI designer

tweak the associated CSS-Stylesheets.
– Source View provides a pretty-printed and syntax-

highlighted XHTML view onto the source code .

48

Alexandre Bergel

Benefits with Seaside

• With PHP: Control flow scattered into files
(flight.html, address.html, ...)

• With Seaside: Control flow = method calls
(getFlight, getAddress, ...)

• Bandwidth saved: session state is only stored on the
server side.

• It makes reuse easier!

49

