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Seaside in a Nutshell
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Outline

1. What is Seaside?
2. Starting Seaside
3. Create new Seaside Component
4. Creating GUI
5. Using CSS
6. Interaction Between Components
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Introduction to Seaside

• Application server Framework
• Useful for generating dynamic web pages

• Web server application for Squeak (used in this 
presentation) and VisualWorks.

• Works on the top of a webserver (Comanche, 
Swazoo).

• Provides high-level API to handle navigation between 
pages (links) and GUI.
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Some of the Seaside Features

• Sessions as continuous piece of code
• XHTML/CSS building
• Callback based event-model
• Composition and Reuse
• Development tools
• Interactive debugging
• Multiple control flow

5



Alexandre Bergel

Starting Seaside

• Start the server with:
WAKom startOn: 9090 

• Go to to access the counter component: 
http://localhost:9090/seaside/counter
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Component Responsibilities

• It is a subclass of WAComponent
• It contains a State modeled as instance variables
• The flow is defined by methods
• Rendering (high-level API that generate XHTML)
• Style (CSS)
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Counter Example
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• WACounter inherits from WAComponent.
WACounter

initialize

increase

self session registerObjectForBacktracking: self.
count := 0

WAComponent

count

count := count + 1

count := count - 1 decrease

html heading: count.
html anchorWithAction: [self increase] text: '++'.
html space.
html anchorWithAction: [self decrease] text: '--'.

renderContentOn: html

self registerAsApplication: ‘counter’
WACounter class>>initialize
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Creating new Component

• Designing a small application to memorize words in 
a foreign language.

• Display a score to show the progress. 
• 2 ways of using:

– Adding a new word in the database
– Entering a translation
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Creating new Component
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Component Definition

• Definition of the main class:
WAComponent subclass: #Learner
	instanceVariableNames: 'words germanWord englishWord 
score'
	classVariableNames: ''
	poolDictionaries: ''
	category: 'WordLearning'
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Variables Initialization

• List of entered words:
Learner>>words
	words ifNil: [words := OrderedCollection new].
	^ words

• Score (increased when an entered word is correct):
Learner>>score
	score ifNil: [score := 0].
	^ score

• Choose a word:
Learner>>chooseEntry
	 ^ self words atRandom
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Helper Methods

• Could we ask for a word?
Learner>>readyToGuessWord
	^ self words notEmpty

• Increasing the score:
Learner>> increaseScore
	score := self score + 1

13



Alexandre Bergel

Managing the Back Button

• Need to keep the history of the objects, in case of 
pressing the back button on the web browser
Learner>>initialize
	super initialize.
	self session registerObjectForBacktracking: self.

• A trace of the lifetime is kept. When the back button 
is pressed, state previously recorded is restored.

14



Alexandre Bergel

Registration of the Application

• Application registration:
Learner class>>initialize
	self registerAsApplication: 'word'
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Rendering (1/2)

• Learner>>renderContentOn: html
html heading: 'Improve your Language Skills'.
html form:  [
 html text: 'English: '.
	html textInputWithCallback: [:w| englishWord := w].
	html text: ' German: '.
	html textInputWithCallback: [:w| germanWord := w].
	html submitButtonWithAction: 
	   [self words add: (Array with: englishWord with: germanWord)] 
	        text: 'Add Word'.
].
...
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Rendering (2/2)

• ...
html horizontalRule.
self readyToChooseWord ifTrue: [
	html heading: 'Your score is: ', self score asString.
	html form: [ |chosenWord|
	  chosenWord := self chooseEntry.
	  html text: (chosenWord first).
	  html textInputWithCallback: 
      [:w| (w = chosenWord second) ifTrue: 
             [self increaseScore]]]]
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Creating GUI (1/2)

• Displaying simple text:
html text: ‘My Text’

• Using different size:
html heading: aBlockOrText level: level
html heading: aBlockOrString

• Link with action:
html anchorWithAction: aBlock text: aString

• TextField without any button:
html form: [... html textInputWithCallback: aBlock ...]
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Creating GUI (2/2)

• Using a form:
html form: [
   html textInputWithCallback: aBlock.
   ...
   html submitButtonWithAction: aBlock text: aString]

• Look at the class WAHtmlRenderer and 
WAAbstractHtmlBuilder
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CSS: to give a better look

• Use divNamed: aString with: aBlockOrObject
	html divNamed: 'title' with: [
	    html text: 'Improve Language Skills'
	].

• Or
	html divNamed: 'title' with: 'Improve Language Skills'
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CSS: defining the style

• Define a method named style on the seaside 
component:
WordLearningComponent>>style
 ^ ‘#title { 
	background-color: lightblue;
	margin: 10px; 
	text-align: center;
	color: blue;
	font-size: 18pt;
	margin-top: 400px}
body { 
	background-image: url("http://www.iam.unibe.ch/~bergel/
catsEye_hst_full.jpg");
	background-repeat: no-repeat;
	background-position: top center;

color: blue;}’
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CSS: more info

• Supported by many web browsers

• Where to get more information:
http://www.w3schools.com/css

• ZenGarden: 
http://www.csszengarden.com/
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call: / answer:

A>>m1
   x := self call: 
   x printString

B

B>>m2
    self answer: 69

A>>m1 
   x := self call: 
   x printString 
    -> 69

components in browsercode

A

A

AB

B

The framed B in the method m1 is a graphical object displayed as the window B 
in the web browser. m2 is a method that is invoked in a callback i.e., when an 
action on the component B is invoked such as a button pressed or a link clicked.
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call: / answer:

•  To transfer control to another component, 
WAComponent provides the special method #call:. 
This method takes a component as a parameter, and 
will immediately begin that component's response 
loop, displaying it to the user.

• If a called component provides an argument to 
#answer:, that argument will be returned from 
#call:. In other words, calling a component can yield 
a result.
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Example: Sushi Shop Online

search component

list component

batch component

cart view component
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Logical Flow

Fill cart
Confirm 

contents.
Checkout?

buy

no

Shipping 
address

yes

Use shipping 
as billing 
address?

Payment 
infos

Billing 
address

no

yes  

ok

ok 

ok 

Confirmation
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XHTML generation

• XHTML code is generated programmatically:
Store>>renderContentOn: html
	html cssId: 'banner'.
	html table: [
		 html tableRowWith: [
		 	 html divNamed: 'title' with: self title.
		 	 html divNamed: 'subtitle' with: self subtitle.
		 ]
	].
	html divNamed: 'body' with: task
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Control Flow

WAStoreTask>>go
	| shipping billing creditCard |
	cart := WAStoreCart new.
	self isolate:
	   [[self fillCart. self confirmContentsOfCart] whileFalse].
	self isolate:
	   [shipping := self getShippingAddress.
	    billing := (self useAsBillingAddress: shipping)
		 	 	 	 ifFalse: [self getBillingAddress]
		 	 	 	 ifTrue: [shipping].
		 creditCard := self getPaymentInfo.
		 self shipTo: shipping billTo: billing payWith: 
creditCard].
	self displayConfirmation.
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Control Flow

• To fill in the cart:
WAStore>>fillCart
	   self call: (WAStoreFillCart new cart: cart)

• To confirm contents of cart:
WAStoreTask>>confirmContentsOfCart
	    ^ self call:
		 ((WAStoreCartConfirmation new cart: cart)
		 	 addMessage: 'Please verify your order:')

• Payment:
WAStore>>getPaymentInfo
	^ self call:
	  ((WAStorePaymentEditor new
	      validateWith: [:p | p validate])
	addMessage: 'Please enter your payment information:')
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Control Flow

• answer returns the component itself
WAStoreFillCart>>checkout
   self answer
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Some Guidelines

• Tasks are used to embed the logical flow of an 
application within the go method, whereas

• The rendering is in charge of components.
• Hence, the entry point of an application should be a 

task’s go method
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Seaside

• Used in industries
• More info on: 

http://www.beta4.com/seaside2
• Seaside’s fathers: Avi Bryant and Julian Fitzell
• Mailing list: 

http://lists.squeakfoundation.org/listinfo/seaside
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Outline

1. What is a Web-based Application?
2. Issues when Directly Dealing with HTML
3. Example: Sushi Shop Online
4. Seaside Approach
5. Manipulating Non-Linear Control Flow
6. Development Tools
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What is a Web-based Application?

• A  collection  of  functions  that  take  HTTP  
requests  as  input  and  produce  HTTP responses 
as output.

• Logical part centralized
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Directly Manipulating HTML

• Stateless connection toward the server. State has to 
be passed around for each connection.

• ASP, PHP
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What is a Web-based Application?

...
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User: Web browser

flight.html

GET 
flight.html

<a href=
”address.html?cart=...”

address.html

GET 
address.html?cart=...

<a href=
”payment.html?
cart=...&address=...”
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Directly Manipulating HTML

• Applications are difficult to maintain:
– Adding, renaming, removing some state is difficult
– Flow execution scattered in several files
– Poor management of the bandwidth: state has to be 

passed for each action!
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Common Issues with Classical Framework

• Applications are often tedious to use:
– Do not use the back button!
– Do not duplicate the windows!
– “Press OK only once!!!”
– “Do you want to resend the form?”
– Cookies manipulations
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Seaside Approach

• Each session has one unique ID kept over its life 
time:
– Users (web browsers windows) are distinguished

• Each action has one ID unique over the session:
– In the lifetime of a session, an action is unique (”press OK 

only once”)
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Non-Linear Control Flow

• The control flow of an application can always be 
modified by the user when pressing the back button 
or by opening a new browser on the same url.
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Backtracking State

• With seaside, an object can be backtracked using the 
method: 
WASession>>registerObjectForBacktracking: anObject

• After each response sent to the client, Seaside 
snapshots the registered objects by creating a copy 
and putting them into a cache.

• Pressing the back button on the browser restores 
the state of the object which is in sync of the display.
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Transaction

• In complex applications it is often the case that we 
must ensure that the user is prevented from going 
back over a sequence of pages to make 
modifications.

• Controlling the control flow is implemented by the 
method:
Component>>isolate: aBlock

• It treats the control flow defined in the block as a 
transaction. It makes sure that the user can move 
forward and backward within the transaction. Once 
completed, the user cannot go back anymore.
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Debugging with Seaside

• When debugged, an application does not need to be 
restarted or manually recompiled

44



Alexandre Bergel

Debugging
1

3

2

a b

cd
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Toolbar

Source View

Rendered View

System Browser

Inspector

Library Browser

Component

Name

(a) Toolbar

(b) Halo
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Toolbar

• A toolbar is shown at the bottom of the web-
application during the development phase.

• It allows one to access some tools:
– New Session restart the application
– Configure opens a dialog letting the user configure some 

settings
– Toggle Halos shows or hides the halos (explained later)
– Profile shows a detailed report on the computation time 

used to render the page
– Memory Use display a detailed report on the memory 

consumption
– XHTML start an external XML validator on this page
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Halos

• When enabling the halos, every component gets 
surronded by a thin grey line and a header giving the 
class name of the component and a set of buttons to 
run tools and to change the viewing mode.
– System Browser opens an editor on the current 

component.
– Inspector opens a view on the current component.
– Library Browser opens an editor that lets a UI designer 

tweak the associated CSS-Stylesheets.
– Source View provides a pretty-printed and syntax-

highlighted XHTML view onto the source code .
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Benefits with Seaside

• With PHP: Control flow scattered into files 
(flight.html, address.html, ...)

• With Seaside: Control flow = method calls 
(getFlight, getAddress, ...)

• Bandwidth saved: session state is only stored on the 
server side.

• It makes reuse easier!
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