
Chapter 1

Creating Browsers with
OmniBrowser

In this chapter, we present OmniBrowser, a browser framework that
supports the definition of browsers based on explicit metamodels. In
OmniBrowser framework, a browser is a graphical list-oriented tool to
navigate and edit any arbitrary domain. The most common representative
of this category of tools is the Smalltalk system browser, which is used to
navigate and edit Smalltalk source code. In OmniBrowser, a browser is
described by a domain model and a metagraph which specifies how the
domain space may be navigated through. Widgets such as list menus and
text panels are used to display information gathered from a particular path
in the metagraph. Although widgets are programmatically composed by
the framework, OmniBrowser allows for interaction with the end user.

In the following, we show how to build new browsers from predefined
parts and how to easily describe new tools. Three exemplary browsers, a
file browser, a remake of the ubiquitous Smalltalk system browser, and a
coverage browser, will illustrate how to define sophisticated browsers for
various domains.

1.1 Representing State of a User Interface

The state of a graphical user interface (GUI) is defined as a collection of the
states of the widgets making up the interface. The state of a widget refers
to the state the widget is in. It may be modified whenever an end-user
performs an action on this widget such as clicking a button or selecting an

2 Creating Browsers with OmniBrowser

entry in a menu. Therefore, a GUI has a high number of different states.
Asserting the validity for each of these states is crucial to avoid broken or
inconsistent interfaces.

Given the potential high number of different states of a GUI, asserting
the validity of a GUI is a challenging task. Let’s illustrate this situation
with the Smalltalk system browser, a graphical tool to edit and navigate
into Smalltalk source code.

A B C D

E

F

Figure 1.1: The traditional Smalltalk System Browser roughly depicted.

Figure 1.1 depicts the different widgets of a traditional Smalltalk class
system browser (see Figure 1.7 for a real picture). Without entering into
details, A, B, C and D are lists that show class categories (groups of classes),
classes, method protocols (groups of methods) and methods. E is a radio
button composed of three choices and F is a text pane.

Pane A lists the categories in the system. Selecting a category in this
list, makes the classes in that category appear in pane B. Selecting a class
results in the protocols for that class being shown in pane C, and selecting
a protocol lists the method names in pane D. Switch E controls whether the
class or the metaclass is being edited, and therefore whether the protocols
and methods shown are instance level or class level methods. Pane F is
a text pane that gives feedback on whatever is selected in the top panes,
always displaying the most specific information possible. For example,
when a user has selected a method in a protocol in a class in a certain
category, pane F shows the definition of that method (and not the definition
of the class of that method).

The description of how the browser works shows a number of naviga-
tion invariants that need to be kept when implementing the browser. For
example, the selections goes from left to right: it is not possible to have
methods listed in pane D with pane C being empty.

Invariants such as the one given above need to be implemented and
checked when building a browser. So we are dealing with writing an
application that deals with a potentially very big number of states in which
only certain transitions between states need to be allowed (the ones that

Graph and Metagraph of a Browser 3

correspond to navigations the user of the browser). Whenever a user clicks
on widgets that make up the GUI of the browser, the state of one or more
widgets is changed, and possibly new navigation possibilities open up
(being able to select a method name, for example). To deal with the fact that
a widget can be in an inconsistent state, developers often rely on guards:
the method performing an action in reaction to a user action always checks
whether the state is actually correct or not nil.

In addition the state management is often spread over the UI elements.
This leads to code with complex and often error-prone logic. In addition it
makes tool elements difficult to extend and reuse in different context.

The main problem when building a browser is representing the mapping
from the intended navigation model to the domain model and widgets.
In the next section, we describe OmniBrowser, a framework to design
browsers where the domain model is distinct from the navigation space

Andrew Iisn’t that always the case?J . The latter is being described by a meta-
graph. The state of a browser is defined by a path in this metagraph.

1.2 Graph and Metagraph of a Browser

The domain of the OmniBrowser framework is browsers, applications with
a graphical user interface that are used to navigate a graph of domain
elements. When instantiating the OmniBrowser framework to create a
browser for a particular domain, the domain elements need to be specified,
as well as the desired navigation paths between them.

The OmniBrowser framework is structured around (i) an explicit do-
main model and (ii) a metagraph, a state machine, that specifies the nav-
igation in and interaction with the domain model. The user interface is
constructed by the framework, and uses a layout similar to the Smalltalk
System Browser, with two horizontal parts. The top part is a column-based
section where the navigation is done. The bottom half is a text pane.

Overview of the OmniBrowser framework

The major classes that make up the OmniBrowser framework are presented
in Figure 1.2, and explained briefly in the rest of this section.

Browser. A browser is a graphical tool to navigate and edit a domain space.
This domain has to be described in terms of a directed cyclic graph (DCG).
It is cyclic because for example file systems or structural meta models of
programming language (i.e., packages, classes, methods...) contain cycles,

4 Creating Browsers with OmniBrowser

label
keystroke
isActive
execute

target
requestor

Command

name
text
definition

Node
dispatcher
panels

Browser

childAt:put:
addActor:
displaySelector:
autoSelect:

displaySelector
edges

MetaNode

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Filter

defaultMetaNode
defaultRootNode
open
title

Browser class

defaultMetaNode

defaultRootNodemetaNode

filterClass

Omnibrowser core framework

ModalFilter

accept:notifying:
text
text:

Definition

Figure 1.2: Core of the OmniBrowser framework.

and we need to be able to model those. The domain graph has to have
an entry point, its root. The path from this root to a particular node cor-
responds to a state of the browser defined by a particular combination of
user actions (such as menu selections or button presses). The navigation of
this domain graph is specified in a metagraph, a state machine describing
the states and their possible transitions.

Node. A node is a wrapper for a domain object, and has two responsibili-
ties: rendering the domain object, and returning domain nodes. Note that
how the domain graph can be navigated is implemented in the metagraph.

Metagraph. A browser’s metagraph defines the way a user traverses the
graph of domain objects. A metagraph is composed of metanodes and
metaedges. A metanode identifies a state in which the browser may be. A
metanode may reference a filter (described below) The metanode does not
have the knowledge of the domain nodes, however each node is associated
to a metanode. Transitions between metanodes are defined by metaedges.
When a metaedge is traversed (i.e., result of pressing a button or selecting
an entry list), sibling nodes are created from a given node by invoking a
method that has the name of the metaedge.

A metanode has the ability to be auto selected with the method MetaNode
»autoSelect: aMetaNode. When a particular child for auto selection is desig-
nated, the first node produced by following its metaedge will be selected.

Graph and Metagraph of a Browser 5

Command. A Command enables interaction and manipulation of the do-
main graph. Commands may be available through menus and buttons in
the browser. They therefore have the ability to render themselves in a user
interfaces and are responsible for handling exceptions that may occur when
triggered.

Commands are defined in a non-invasive way: adding and removing
commands is done without any method redefinition of the core framework.
This enables a smooth gathering of commands independently realized.

A command is defined by subclassing OBCommand, then redefining
its four main methods with the desired behavior and finally defining a
method on the browser class whose name begins with cmd. This method
has to return a command class. An example is provided in the following
subsection.

Filter. The metagraph describes a state machine. When the browser is in
a state in which more than one transition are available, the user decides
which transition to follow. To allow that to happen OmniBrowser displays
the possible transitions to the user. From all the possible transitions, Om-
niBrowser framework fetches all the nodes that represent the states the
user could arrive at by following those transitions and list them in the next
column. Note that the transition is not actually made yet, and the definition
pane is still displaying the current definition. Once a click is made, the
transition actually happens, the definition pane is updated (and perhaps
other panes such as button bars), and OmniBrowser gathers the next round
of possible transitions.

A filter provides a strategy for filtering out some of the nodes from
the display. If a node is the starting point of several edges, a filter may
be needed to filter out all but one edge to determine which path has to be
taken in the metagraph.

Definition. While navigating in the domain space, information about the
selected node is displayed in a dedicated textual panel. If edition of the text
is expected by the browser user, then a definition is necessary to handle
modification and commitment (i.e., an accept in the Smalltalk terminology).
A definition is produced by a node.

Building a File Browser

To illustrate how the OmniBrowser framework is instantiated, we describe
the implementation of a simple file browser supporting the navigation in
directories and files.

6 Creating Browsers with OmniBrowser

Figure 1.3: A minimal file browser based on OmniBrowser.

Figure 1.3 shows the file browser in action. A browser is opened by
evaluating FileBrowser open in a workspace. The navigation columns in the
case of a file browser are used to navigate through directories, where every
column lists the contents of the directory selected in its left column, similar
to the Column View of the Finder in the Mac OS-X operating system. Note
that we can have an infinite numbers of panes navigating through the
file system. The horizontal scrollbar lets the user browse the directory
structure. A text panel below the columns displays additional properties of
the currently selected directory or file and provides means to manipulate
these properties.

Metagraph Definition. A filesystem encompasses basically two kind of
entities, files and directories. To model the navigation of a filesystem we
thus need two metanodes in the metagraph, Directory and File. Within any
directory of a filesystem, we can again find files and other directories,
hence there are two kind of transitions outgoing from a directory metanode,
files and directories. When opening the filesystem browser, we launch it
for a given directory, e.g., the root directory of the filesystem. Thus the
metagraph’s root metanode represents a directory. Figure 1.4, right, shows
this metagraph describing a filesystem.

Graph and Metagraph of a Browser 7

To concretely implement this filesystem metagraph we define a
class OBFileBrowser as a subclass of OBBrowser and write the method
defaultMetaNode on the class side. This method first defines the two metan-
odes Directory and File and specifies second the two transitions leaving
directory and going to the metanodes Directory and File, respectively. These
transitions are implemented as children of the metanode Directory and are
called directories and files, respectively. defaultMetaNode finally answers the
root metanode, in our case Directory.

OBFileBrowser class>>defaultMetaNode
"returns the directory metanode that acts as the root metanode"

| directory file |
directory := OBMetaNode named: 'Directory'.
file := OBMetaNode named: 'File'.
directory

childAt: #directories put: directory;
childAt: #files put: file.

↑ directory

When one of the two #directories and #files metaedges is traversed, the
name of this metaedge is used as a message name sent to the metanode’s
node.

As soon as we have defined the metagraph, we can model the domain
with node classes. For every metanode in the metagraph we also need a
concrete node class in our model, in this case we need two node classes, one
representing a directory, the other a file. As the root metanode in the graph
represents a directory, the concrete node in the model has to be a concrete
directory node, eg. representing the root directory of the filesystem. This
default root node is answered by the class-side method defaultRootNode of
OBFileBrowser:

OBFileBrowser class>>defaultRootNode
↑OBDirectoryNode new path: '/'

The next step consists of modeling the domain objects, i.e., nodes.

Node definitions. Nodes wrap objects of the browsed domain. First the
class OBFileNode, a subclass of OBNode, has to be defined. Instances of this
class will represent concrete files. A file node is identified by a full path
name, stored in a variable. A directory is another entity in our model that
contains directories and files. A directory can be simply modeled as a
special kind of file. The only difference between a file and a directory node
is that for a directory the path variable points to a directory, not to a file.

8 Creating Browsers with OmniBrowser

OBNode subclass: #OBFileNode
instanceVariableNames: 'path'
classVariableNames: ''
poolDictionaries: ''
category: 'OBExample--FileBrowser'

OBFileNode subclass: #OBDirectoryNode
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'OBExample--FileBrowser'

The name of the node is simply the name of the file selected:

OBFileNode>>name
↑ (self path subStrings: '/') last

The variable path has to be accessed:

OBFileNode>>path
↑ path

OBFileNode>>path: aString
path := aString

A text containing information about the selected file is returned by the
method text:

OBFileNode>>text
↑ 'First 1000 characters: ', String cr,

((FileStream readOnlyFileNamed: path) converter: Latin1TextConverter new;
next: 1000) asString

The methods files and directories are defined on the class OBDirectoryNode.

OBDirectoryNode>>directories
| dir |
dir := FileDirectory on: path.
↑ dir directoryNames collect: [:each |

OBDirectoryNode new path: (dir fullNameFor: each)]

OBDirectoryNode>>files
| dir |
dir := FileDirectory on: path.
↑ dir fileNames collect: [:each |

OBFileNode new path: (dir fullNameFor: each)]

Graph and Metagraph of a Browser 9

The implementation shows the two responsibilities of a node: rendering
itself (implemented in the text method), and calculating the nodes reachable
from a node (in the directories and files methods). As there is no further navi-
gation leaving a file node, such a node does not have to define navigation
methods such as directories or files.

File

Directory

#files

N metanode

is an ancestor of

#directories

N object node
/

/temp pic1.jpg

pic2.jpg pic3.jpg

transition

(a) Instantiated domain (b) Metagraph

N root metanode

Figure 1.4: A filesystem as a graph (a) and its corresponding metagraph (b).

To visually distinguish files from directories when browsing a directory
with our file browser, we can add an icon to each element in the list. To
illustrate this, we will denote directories with a small folder icon.

The first step is to integrate the icon itself into a Squeak image. In the
class OBMorphicIcons you see some pre-defined icons stored in methods such
as arrowUp. To import an icon stored as an image (e.g., as a GIF file), you can
use this code:

| image stream |
image := ColorForm fromFileNamed: '/path/to/icon.gif'.
stream := WriteStream with: String new.
image storeOn: stream.
stream contents.

Inspect this whole code listing. In the inspector you see the definition of
the color form for the icon. You can now install the content of this ByteString
as a method in the method protocol icons of OBMorphicIcons in a method
called folder. Make sure that you do not return the string, but the code
within the string, so that if the method gets invoked a color form for the
folder icon is returned. For example, a flag icon is defined as:

OBMorphicIcons>>flag

10 Creating Browsers with OmniBrowser

↑ ((ColorForm
extent: 12@12
depth: 8
fromArray: #(437918234 437918234 437918234 436470535 101584139
387389210 436404481 17105924 303634202 436666638 ...

In the second step you can take this icon and display it in the columns
for every directory. To achieve this, simply add a method icon to the class
OBDirectoryNode:

OBDirectoryNode >>icon
↑#folder

The method icon gets executed for every element that is added to a
column. If it answers a symbol, then the method of OBMorphicIcons with the
same name is executed, answering the icon as a color form to be added on
the left of the list element, i.e., the directory name.

At this stage, we can open a file browser by evaluating OBFileBrowser
open in a workspace. To allow users to perform actions on a selected file,
we add commands to the browser. Note that you will need to open a
new browser to see these command in effect. They are implemented with
subclasses of OBCommand:

OBCommand subclass: #OBRemoveFileCommand
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'OBExample--FileBrowser'

The functionality of this command is basically implemented in four
methods:

• isActive - test condition to determine if this command is active in the
current column for the currently selected node

• keystroke - a letter used to trigger this command with the keyboard

• label - the string denoting this command in the command menu

• execute - holds the functionality to be triggered if the user executes
this command

When these methods get executed, the command already knows the
column from which it gets triggered (stored in the instance variable requestor
) and the target node for which the action has to be exectuted (stored in the
instance variable target). With this information available we can implement
these four methods as follows:

Graph and Metagraph of a Browser 11

OBRemoveFileCommand>>isActive
"only active for files"
↑ (target isKindOf: OBFileNode) and: [requestor isSelected: target]

OBRemoveFileCommand>>keystroke
↑ $d

OBRemoveFileCommand>>label
↑ 'remove file'

OBRemoveFileCommand>>execute
FileDirectory deleteFilePath: target path

To integrate this command the class OBFileBrowser has to be extended
with a method whose name needs to start with 'cmd':

OBFileBrowser>>cmdRemoveFile
↑OBRemoveFileCommand

Open a new browser, then right click on a selected file and you will get a
menu that contains this command. Currently, the list of files is not refreshed
when files are removed. Refreshing can for instance be done by announcing
a nodeDeleted announcement in the execute method. This can be achieved
by inserting the expression target announce: (OBNodeDeleted node: self). Since
this is a common operation, an helper is provided for that purpose: simply
send the signalDeletion message to target.

Core Behavior of the Framework

The core of the OmniBrowser framework is composed of 8 classes (Fig-
ure 1.2). We denote the Smalltalk metaclass hierarchy by a dashed arrow.

The metaclass of the class OBBrowser is OBBrowser class. It defines two
abstract methods defaultMetaNode and defaultRootNode. These methods are
abstract, they therefore need to be overridden in subclasses. These methods
are called when a browser is instantiated. The methods defaultMetaNode
and defaultRootNode return the root metanode and the root domain node,
respectively. A browser is opened by sending the message open to an
instance of the class OBBrowser.

The navigation graph is built with instances of the class OBMetaNode.
Transitions are built by sending the message childAt: selector put: metanode to
a MetaNode instance. This has the effect to create a metaedge named selector
leading away the metanode receiver of the message and metanode.

12 Creating Browsers with OmniBrowser

name
text
definition

Node
dispatcher
panels

Browser

childAt:put:
addActor:
displaySelector:
autoSelect:

displaySelector
edges

MetaNode

name
text

path
FileNode

nodesForParent:
selectAncestorOf:withParent:
wantsButton

Filter

defaultMetaNode
defaultRootNode
open
title

Browser class

directories
files

DirectoryNode
label
keystroke
isActive
execute

RemoveCommand
FileBrowser

defaultMetaNode
defaultRootNode
title

FileBrowser
class

defaultMetaNode

defaultRootNodemetaNode

filterClass

Omnibrowser core framework

File browser

instance of

ModalFilter

accept:notifying:
text
text:

Definition

label
keystroke
isActive
execute

target
requestor

Command

Figure 1.5: Core of the OmniBrowser framework and its extension for the
file browser.

At runtime, the graph traversal is triggered by user actions (e.g., press-
ing a button or selecting a list entry) which send the metaedge’s name to the
node that is currently selected. The rendering of a node is performed by in-
voking on the domain node the selector stored in the variable displaySelector
in the metanode.

The class OBCommand is instantiated by the framework and the set of
commands for a browser is discovered (through the Smalltalk reflection
API) when a browser is instantiated. All methods starting with the cmd
prefix are considered as commands. Each of this method should return the
class of the command (and not an instance of it).

The class OBNode represents an element of the domain graph. Each
node has a name. This name is used when lists of nodes are displayed in
the navigation columns of the browser. When a node is selected in a list,
information related to this node needs to be displayed in the bottom text
pane. When the node is not supposed to be edited, the message text is sent
to it, returning a string displayed in the bottom pane. When it is editable,

Graph and Metagraph of a Browser 13

the message definition is sent and it is expected to return an instance of a
subclass of OBDefinition. Note that the nodes do not need to be configured
to be editable or not. When they implement a method definition, this will be
used and the node will be editable. If that method is not present, then the
method text is used.

When the browser is in a state where several transitions are available,
it displays the navigation possibilities to the user. From all the possible
transitions, OmniBrowser framework fetches all the nodes that represent
the states the user could arrive at by following those transitions and lists
them in the next column. Once a selection is made, the transition actually
happens, the pane definition is updated and the process repeats.

As explained before, a filter or modal filter can be used to select only a
number of outgoing edges when not all of them need to be shown to the
user. This is useful for instance to display the instance side, comments, or
class side of a particular class in the classic standard system browser (cf.
Section 1.3). Class OBFilter is responsible for filtering nodes in the graph.
The method nodesForParent: computes a transition in the domain metagraph.
This method returns a list of nodes obtained from a given node passed as
argument. The class OBFilter is subclassed into OBModalFilter, a handy filter
that represents transitions in the metagraph that can be traversed by using
a radio button in the GUI.

Glueing Widgets with the Metagraph

From the programmer point of view, creating a new browser implies defin-
ing a domain model (set of nodes like FileNode and DirectoryNode), a meta-
graph intended to steer the navigation and a set of commands to define
interaction and actions with domain elements. The graphical user interface
of a browser is automatically generated by the OmniBrowser framework.
The GUI generated by OmniBrowser framework is contained in one win-
dow, and it is composed of 4 kinds of widgets (lists, radio buttons, menus
and text panes).

Lists. Navigation in OmniBrowser framework is rendered with a set of
lists and triggered by selecting one entry in a list. Lists displayed in a
browser are ordered and are displayed from left to right. Traversing a new
metanode, by selecting a node in a list A, triggers the construction of a set
of nodes intended to fill a list B. List B follows list A.

The root of a metagraph corresponds to the left-most list. The number
of lists displayed is equal to the depth of the metagraph. The depth of the
system browser metagraph (Figure 1.9) is 4, therefore the system browser

14 Creating Browsers with OmniBrowser

has 4 lists (Figure 1.7). Because the metagraph of a filesystem may contain
cycles (i.e., a directory may contain directories, as shown in Figure 1.4), the
number of lists in the browser increases for each directory selected in the
right-most list. Therefore a horizontal scrollbar is used to keep the width of
the browser constant, yet displaying a potentially infinite number of lists in
the top half.

Radio buttons. A modal filter in the metagraph is represented in the GUI
by a radio button. Each edge leading away from the filter is represented as
a button in the radio button. Only one button can be selected at a time in the
radio button, and the associated choice is used to determine the outgoing
edges. For example, the second list in the system browser contains the three
buttons instance, ? and class as shown the transition from the environment
to the three metanodes class, class comment and metaclass in Figure 1.7.

Menus. A menu can be displayed for each list widget of a browser. Typi-
cally such a menu displays a list of actions that can be executed by the user.
These actions enable interaction with the domain model, however they do
not allow further navigation in the metagraph.

Figure 1.6: Example of menu in the OmniBrowser framework system
browser.

Figure 1.6 shows an example of a menu offering actions related to

The OmniBrowser-based System Browser 15

a class. These correspond to the list of commands defined in the class
OBCodeBrowser.

Definition pane. When a node is selected in a list, information related to
this node is displayed in a text pane. Committing a change in the definition
pane sends the message accept: newText notifying: aController to the definition
shown in this pane. A browser contains only one text pane.

1.3 The OmniBrowser-based System Browser

In this section we show how the framework is used to implement the
traditional class system browser.

The Smalltalk System Browser

The system browser is probably the most important tool offered by the
Squeak programming environment. It enables code navigation and code
editing. Figure 1.7 shows the graphical user interface of this browser, and
how it appears to the Smalltalk programmer.

Figure 1.7: OmniBrowser based Smalltalk system browser.

16 Creating Browsers with OmniBrowser

This browser just replicates the traditional four panes system browser
discussed in Section 1.1. The system browser is mainly composed of four
lists (upper part) and a panel (lower part). From left to right, the lists
represent (i) class categories, (ii) classes contained in the selected class
category, (iii) method categories defined in the selected class to which the ----
all ---- category is added, and (iv) the list of methods defined in the selected
method category. On Figure 1.7, the class named Class, which belongs to the
class category Kernel--Classes is selected. Class has three methods categories,
plus the ---- all ---- one. The method templateForSubclassOf:category contained
in the instance creation method category is selected.

The lower part of the system browser contains a large textual panel
displaying information about the current selection in the lists. Selecting a
class category triggers the display of a class template intended to be filled
out to create a new class in the system. If a class is selected, then this panel
shows the definition of this class. If a method is selected, then the definition
of this method is displayed. The text contained in the panel can be edited.
The effect of this is to create a new class, a new methods, or changing the
definition of a class (e.g., adding a new variable, changing the superclass)
or redefining a method.

In the upper part, the class list contains three buttons (titled instance, ?
and class) to let one switch between different “views” on a class: the class
definition, its comment and the definition of its metaclass. Just above the
definition panel, there is a toolbar intended to open more specific browsers
like a hierarchy browser or a variable access browser.

The ---- all ---- method category gets automatically selected when no other
method category is selected. This is specified in the OBMetagraphBuilder»
populateClassNode method by invoking autoSelect: aMetanode.

System Browser Internals

The OmniBrowser-based implementation of the Squeak system browser is
composed of 17 classes (2 classes for the browser, 3 classes for the definitions
of classes, methods and organization, 10 classes defining nodes and 2 utility
classes with abstractions to help link the browser and the system). Figure 1.8
shows the classes in OmniBrowser framework that need to be subclassed
to produce the system browser. Note that the two utility classes are not
represented on the picture.

Compared to the default implementation of the Squeak System Browser
this is less code and better factored. In addition other code-browsers can
freely reuse these parts.

Figure 1.9 depicts the metagraph of the system browser. The metanode

The OmniBrowser-based System Browser 17

Omnibrowser core framework

System browser

Remove
Class

Remove
Method

Code
Browser

System
Browser

Class
Definition

Method
Definition

Organization
Definition

Code
Node

ClassAware
Node

ClassComment
Node

ClassNode

MetaClassN
ode

Method
CategoryNode

AllMethod
CategoryNode

Method
Node

ClassCategory
Node

Environment
Node

BrowserNode CommandDefinition

...

Figure 1.8: Extension of the OmniBrowser framework to define the system
browser.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment

Figure 1.9: Metagraph of the system browser.

environment contains information about class categories. The filter is used
to select what has to be displayed from the selected class (i.e., the class
definition, its comment or the metaclass definition). A class and a metaclass
have a list of method categories, including the ---- all ---- method category

18 Creating Browsers with OmniBrowser

that shows a list of all methods.

As in the file browser example, we implement a method defaultMetaNode
on the class side of the browser class, i.e., OBSystemBrowser, returning the
root metanode of the metagraph. This method reads:

OBSystemBrowser class>>defaultMetaNode
| env classCategory |
env := OBMetaNode named: 'Environment'.
classCategory := OBMetaNode named: 'ClassCategory'.
env childAt: #categories put: classCategory.
classCategory ancestrySelector: #isDescendantOfClassCat:.
self buildMetagraphOn: classCategory.
↑env

There is a dedicated utility class called OBMetagraphBuilder to cre-
ate the complex metagraph of the system browser. The method
defaultMetaNode outsources most parts of the metagraph building to this
class. OBMetagraphBuilder implements its functionality in several small meth-
ods, i.e., for every metanode of the metagraph there is a method holding all
code to create this metanode and the outgoing edges, hence it is easily pos-
sible to adapt the metagraph by providing a dedicated subclass overriding
the appropriate methods to change the right metanodes.

The root node of the domain graph is answered by the method
defaultRootNode. For the system browser, the root node is the environment
node:

OBSystemBrowser class>>defaultRootNode
↑OBEnvironmentNode forImage

Ancestry mechanism. As shown in Figure 1.8 there is a number of dif-
ferent nodes that are required to implement the system browser, such as
class node, metaclass node, method node, method protocol node, class
comment node, etc. We do not want to cover all these nodes in detail.
Instead we report on an important feature of OmniBrowser framework to
locate specific nodes in a large domain graph: the ancestry mechanism.

When a target node has to be selected, we start from the root node and
traverse the tree down to the target node, remembering all nodes we pass
during the traversal. Starting from the root node, we test for all children
whether a child is an ancestry of the target node or not. If so, we go one level
deeper and test the same for all children of this child, and so on, until we
reach the target node. Every metanode, which basically models one level
in the domain graph or tree, knows the ancestry selector to be used on this
level. For a class node, the ancestrySelector is called isDescendantOfClass:. If

The OmniBrowser-based System Browser 19

we search for a class node in the domain tree, we test for every class node
if the class to be found is a descendant of that class, i.e., if it is the same
class as we search for. On the class category level, the ancestry selector is
called descendantOfClassCat:, expecting a class category as a parameter. For
every class category, we test whether the target node is a descendant of the
passed class category or not.

This method descendantOfClassCat: is implemented as follows for a node
having a class associated (e.g., a class node or a method node):

OBClassAwareNode>>isDescendantOfClassCat: aClassCategoryNode
↑(self theNonMetaClass environment organization

listAtCategoryNamed: aClassCategoryNode name)
includes: self theNonMetaClassName

To define which metanode, i.e., which level in the tree, uses which
ancestry selector, we just pass this selector when building the metagraph,
using the method ancestrySelector: aSymbol of OBMetaNode. With these kind
of methods, it is possible to locate any node in the domain tree to e.g., jump
to it. This is for instance used when opening a browser for a certain node,
e.g., by using the OBSystemBrowser class-side method openOn: aClass selector:
aSymbol.

Filtering of nodes. In the metagraph we can also define several filters for
a metanode, used to filter and otherwise manipulate the nodes represented
by this metanode before they get displayed in columns Andrew IIs this the

same kind of filter we have previously seen?J . For the class category metanode, for
instance, there are two filters defined: a class sort filter and the modal filter
used to select one of the three outgoing metaedges instance, comment or
class.

Let’s have a look at these two filters, starting with the class sort filter im-
plemented in class OBClassSortFilter. Its responsibility is to sort and indent
all classes of a class category according to their position in a class hierarchy.
If a class category for instance contains two distinct class hierarchies, e.g.,
class C inherits from B, and B and D inherit from A, and E has two sub-
classes F and G, then the class sort filter sorts and indents these classes as
shown in Figure 1.10.

When a metanode is asked for its children nodes (in method
childrenForNode: aNode) it asks its associated filters to answer the nodes by in-
voking their nodesFrom: aCollection forNode: aNode method. In the case of the
class sort filter, aNode refers to the class category node and aCollection holds
all class nodes this class category node returns when the message classes is
sent to it. The class sort filter can now sort the passed class nodes and indent
them appropriately in the method OBClassSortFilter >> nodesFrom:forNode:.

20 Creating Browsers with OmniBrowser

A
B
C

E
F
G

D

Figure 1.10: How OBClassSortFilter sorts and indents two distinct class
hierarchies in one class category.

The other filter defined for a class category metanode, OBModalFilter, has
a different task: It selects one edge of the three outgoing edges from the
class category metanode, i.e., instance, comment or class. The user of the
system browser can select using the switch in the class column (widget
E in Figure 1.1) whether he wants to see the instance-, the class-side or
the comment of the selected class. OBModalFilter remembers the selection
of the user. Dependent on this selection, it answers the corresponding
metaedge to be traversed, e.g., the comment metaedge. This is done in the
method edgesFrom: aCollection forNode: aNode. The metanode, i.e., the class
category metanode, passes all available metaedges to this method, along
with the currently selected class node, and the modal filter answers just the
metaedge selected by the user. Other filters than a modal filter, such as the
class sort filter, typically just return all edges passed to them.

There are two other important tasks performed by filters besides filter-
ing edges and nodes: Manipulating the name of a node to be displayed
and defining an icon shown along with a node in the column. The for-
mer is handled in the method displayString: aString forParent: pNode child:, the
latter in icon: aSymbol forNode: aNode. Before a node’s name gets displayed,
all defined filters can manipulate the display of its name, e.g., emphasize
it in bold. Note that the filter also has access to the parent of a node to be
displayed, not the current node alone. There are also filters enriching a
node with an icon before display, the OBInheritanceFilter for instance adds
arrow up, down icons to methods, if a method overrides a method with the
same name from a super class or is overridden in subclasses. Andrew Ihow

do yo do this?J

A metanode can have arbitrarily many filters, resulting in a chain of
filters. However, if several filters do the same kind of task, e.g., adding an
icon to a node, the last added filter providing this functionality will finally
be responsible to define the icon which the node gets. Hence the order in

The Coverage Browser 21

which the filters get added to the metanode is relevant.

Widgets notification. Widgets like menu lists and text panels interact
with each other by triggering events and receiving notifications. Each
browser has a dispatcher (referenced by the variable dispatcher in the class
Browser) to conduct events passing between widgets of a browser. The
vocabulary of events is the following one:

• refresh is emitted when a complete refresh of the browser is necessary.
For instance, if a change happens in the system, this event is triggered
to trigger a complete redraw.

• nodeSelected is emitted when a list entry is selected with a mouse click.

• nodeDeleted is emitted when a list entry has been removed, e.g., by
executing a remove command.

• nodeChanged is emitted when the node that is currently displayed
changes. This typically occurs when a filter button related to the class
is selected. For example, if a class is displayed, pressing the button
instance, class or comment triggers this event.

• okToChangeNode is emitted to prevent losing some text edition while
changing the content of a text panel if this was modified without
being validated. This happens when a user writes the definition
of a method, without accepting (i.e., compiling) it, and then selects
another method.

Each graphical widget composing a browser is a listener and can emit
events. Creation and registration of widgets as listeners and event emitters
is completely transparent to the end user.

State of the browser. Contrary to the original Squeak system browser
where each widget state is contained in a dedicated variable, the state
of a OmniBrowser framework-based browser is defined as a path in the
metagraph starting from the root metanode. Each metanode taking part of
this path is associated to a domain node. This preserves the synchronization
between different graphical widgets of a browser.

1.4 The Coverage Browser

The coverage browser is an extension to the system browser to show the
coverage of code by unit tests. It extends the system browser in two ways.

22 Creating Browsers with OmniBrowser

First of all it appends the percentage of elements covered by tests to the
elements in the lists making up the browser. Secondly it adds a fifth pane
that lists the unit tests that test a selected method. A screenshot is shown
in Figure 1.11. It shows us that 39% of the class UUID is covered by tests,
and that the method initialize is covered a 100% by the tests shown in the
right-most pane. One of these tests is testCreation.

Figure 1.11: Screenshot of the coverage browser.

The coverage browser is composed of 11 classes (one class for the
browser, five commands and five nodes). Figure 1.12 illustrates how classes
in OmniBrowser and in the system browser are extended to define this new
browser. The metagraph is depicted in Figure 1.13 and is identical to the
system browser except with a new Method Coverage metanode. The depth of
the graph, which is 5, is reflected in the number of list panes the browser is
composed of.

1.5 Evaluation and Discussions

Several other browsers such as a browser specifically supporting new lan-
guage constructs such as Traits have been developed using OmniBrowser
framework demonstrating that the framework is mature and extensible.
Figure 1.14 shows some browsers that are based on OmniBrowser frame-
work. We now discuss the strengths and limitations of the OmniBrowser
framework.

Strengths

Ease of use. As any good framework, extending it following the frame-
work intention makes it easy to specify advanced browsers. The fact that

Evaluation and Discussions 23

Coverage browser

Omnibrowser core framework

System browser

Coverage
Browser

Code
Node

ClassAware
Node

Method
Node

BrowserNode ActorDefinition

Coverage
MethodNode

Coverage
MethodNode

Coverage
ElementNode

Coverage
EnvironmentNode

CoverageSet
Node Coverage

Actor

ElementActorEnvironmentActor

System
Browser

Code
Browser

MethodNode
Actor

CoverageSet
Actor

Figure 1.12: Extension of Omnibrowser and system browser to define the
coverage browser.

Class

Class
Comment

Metaclass

AllMethod
Category

Method
Category

Method

Meta-node Filter Transition

Legend

Meta-node
root

Environment Method
Coverage

Figure 1.13: Metagraph for the coverage browser.

the browser navigation is explicitly defined in one place lets the program-
mer easily understand and control the tool navigation and user interaction.

24 Creating Browsers with OmniBrowser

Code
Browser

Hierarchy
Browser

Inheritance
Browser

List
Browser

Implementor
Browser

Reference
Browser

Sender
Browser

Variables
Browser

System
Browser

Version
Browser

Browser

Figure 1.14: Some code browsers developed using OmniBrowser frame-
work.

The programmer does not have the burden to explicitly create and glue
together the UI widgets and their specific layout. To add additional custom
widgets in a concrete browser, the developer can simply define a class im-
plementing this widget and add an object of this class to the list of widgets
used during the creation of the browser. This list is defined on the class-side
of OBBrowser in the method panels. Still the programmer focuses on the key
domain of the browser: its navigation and the interaction with the user.

Explicit state transitions. Maintaining coherence among different wid-
gets and keeping them synchronized is a non-trival issue that, while
well supported by GUI frameworks, is often not well used. For in-
stance, in the original Squeak browser, methods are scattered with checks
for nil or 0 values. For instance, the method classComment: aText notifying:
aPluggableTextMorph, which is called by the text pane (F widget) to assign a
new comment to the selected class (B widget), is:

theClass := self selectedClassOrMetaClass.
theClass

ifNotNil: [...]

The code above copes with the fact that when pressing on the class
comment button, there is no warranty that a class is selected. In a good
UI design, the comment class button should have been disabled, however
there are still checks done whether a class is selected or not. Among the 438
accessible methods in the non OmniBrowser-based Squeak class Browser, 63
of them invoke ifNil: to test whether a list is selected or not and 62 of them
send the message ifNotNil:. Those are not isolated Smalltalk examples. The

Conclusion 25

code that describes some GUI present in the JHotDraw framework also
contains the pattern checking for a nil value of variables that may reference
graphical widgets.

Such a situation does not occur in OmniBrowser framework, as meta-
graphs are declaratively defined, and each metaedge describes an action
the user can perform on a browser, states a browser can be in are explicit
and fully described.

Separation of domain and navigation. The domain model and its navi-
gation are fully separated: a metanode does not and cannot have a reference
to the domain node currently selected and displayed. Therefore both can
be reused independently.

Limitations

Hardcoded flow. As any framework, OmniBrowser framework con-
straints the space of its own extension. OmniBrowser framework does
not support well the definition of navigation not following the left to right
list construction (the result of the selection creates a new pane to the right
of the current one and the text pane is displayed). For example, building a
browser such as Whiskers that displays multiple methods at the same time
would require to deeply change the text pane state to keep the status of the
currently edited methods.

1.6 Conclusion

Smalltalk is known for its advanced development environment, featuring
advanced browsers that let developers navigate and change code relatively
easily.

Building browsers, however, is a daunting task. The main problem
is that every navigation action performed by a user in a widget changes
the state of that (and possibly other) widgets. Given the high number of
possible navigation actions, the complexity of managing the navigation by
managing the states of the browser is a very complex task. This can be seen
in most current browser implementations, which are complex and hard to
extend because the navigation is implicitly encoded in the management of
the state of the widgets.

To make it easier to build and extend browsers, OmniBrowser is a
framework for building browsers that is based on modeling user naviga-
tion through an explicit graph. In this framework, browsers are built by

26 Creating Browsers with OmniBrowser

modeling the domain with nodes, expressing the navigation with a meta-
graph and describing the interaction between the browser and the domain
through commands. The framework uses these descriptions to construct a
graphical application. The top half of the application uses lists that allow
the user to navigate the described domain. The bottom half of the window
is used to visualize and edit nodes selected in the top half.

The framework is implemented in Squeak Smalltalk and called Omni-
Browser. This Chapter shows three concrete instantiations of the frame-
work: a file browser to navigate a file system, a reimplementation of the
ubiquitous Smalltalk System Browser, and a code coverage browser. Of
course, there are more instantiations available than we have not discussed
in this chapter. The validation shows that the goals of the frameworks
are met. Building the System Browser with the OmniBrowser framework
shows that the code is much simpler. The Code Coverage browser shows
that it is easy to extend an existing browser.

Bibliography

	Creating Browsers with OmniBrowser
	Representing State of a User Interface
	Graph and Metagraph of a Browser
	The OmniBrowser-based System Browser
	The Coverage Browser
	Evaluation and Discussions
	Conclusion

	Bibliography

